UFMylation in tumorigenesis: Mechanistic insights and therapeutic opportunities

IF 4.4 2区 生物学 Q2 CELL BIOLOGY Cellular signalling Pub Date : 2025-02-13 DOI:10.1016/j.cellsig.2025.111657
Bingtao Liu , Tiantian Yang , Jialin Zhang , Hongbin Li
{"title":"UFMylation in tumorigenesis: Mechanistic insights and therapeutic opportunities","authors":"Bingtao Liu ,&nbsp;Tiantian Yang ,&nbsp;Jialin Zhang ,&nbsp;Hongbin Li","doi":"10.1016/j.cellsig.2025.111657","DOIUrl":null,"url":null,"abstract":"<div><div>Post-translational modification (PTM) is an essential mechanism that regulates protein function within cells, influencing aspects such as protein activity, stability, subcellular localization, and interactions with other molecules through the addition or removal of chemical groups on amino acid residues. One notable type of PTM is UFMylation, a recently discovered modification process that involves the covalent attachment of UFM1 to lysine residues on target proteins. This process is facilitated by a specific enzyme system that includes the UFM1-activating enzyme, the UFM1-conjugating enzyme, and the UFM1-specific ligase. UFMylation is crucial for various cellular functions, such as responding to endoplasmic reticulum stress and DNA-damage response, and it is linked to the development and progression of several human diseases, including cancers, highlighting its importance in biological processes. Despite this significance, the range of substrates, regulatory mechanisms, and biological processes associated with UFMylation are not well understood, with only a few substrates having been characterized. Here, we focus on the molecular mechanisms of UFMylation, its implications in tumorigenesis, and its interactions with tumor suppressive and oncogenic signaling pathways. Furthermore, we employed bioinformatics approaches to analyze UFMylation's role in cancer, focusing on expression profiles, mutations, prognosis, drug sensitivity, and immune infiltration to explore its therapeutic potential in immunotherapy.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"129 ","pages":"Article 111657"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000701","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Post-translational modification (PTM) is an essential mechanism that regulates protein function within cells, influencing aspects such as protein activity, stability, subcellular localization, and interactions with other molecules through the addition or removal of chemical groups on amino acid residues. One notable type of PTM is UFMylation, a recently discovered modification process that involves the covalent attachment of UFM1 to lysine residues on target proteins. This process is facilitated by a specific enzyme system that includes the UFM1-activating enzyme, the UFM1-conjugating enzyme, and the UFM1-specific ligase. UFMylation is crucial for various cellular functions, such as responding to endoplasmic reticulum stress and DNA-damage response, and it is linked to the development and progression of several human diseases, including cancers, highlighting its importance in biological processes. Despite this significance, the range of substrates, regulatory mechanisms, and biological processes associated with UFMylation are not well understood, with only a few substrates having been characterized. Here, we focus on the molecular mechanisms of UFMylation, its implications in tumorigenesis, and its interactions with tumor suppressive and oncogenic signaling pathways. Furthermore, we employed bioinformatics approaches to analyze UFMylation's role in cancer, focusing on expression profiles, mutations, prognosis, drug sensitivity, and immune infiltration to explore its therapeutic potential in immunotherapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
期刊最新文献
MSTN gene knockout suppresses the activation of lung fibroblasts through the inhibition of the Smad/AKT signaling pathway, thereby ameliorating pulmonary fibrosis Lung cancer associated transcript 1 binds heat shock protein 90 to promote growth of hepatocellular carcinoma EHF promotes liver cancer progression by meditating IL-6 secretion through transcription regulation of KDM2B in TAMs Study on the effects and mechanism of RRM2 on three gynecological malignancies NOX4 mediates the renoprotection of remote ischemic preconditioning against acute kidney injury by inhibiting NF-κB signaling and tubular apoptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1