Double and single stranded detection of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore sequencing.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-02-15 DOI:10.1038/s42003-025-07681-0
Dominic Oliver Halliwell, Floris Honig, Stefan Bagby, Sandipan Roy, Adele Murrell
{"title":"Double and single stranded detection of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore sequencing.","authors":"Dominic Oliver Halliwell, Floris Honig, Stefan Bagby, Sandipan Roy, Adele Murrell","doi":"10.1038/s42003-025-07681-0","DOIUrl":null,"url":null,"abstract":"<p><p>5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we benchmark 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assess the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. Here we demonstrate the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"243"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07681-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we benchmark 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assess the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. Here we demonstrate the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Human cytomegalovirus UL82 promotes cell cycle progression of colorectal cancer by upregulating AGR2. Ecological change and conflict reduction led to a social circulatory system in ants. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. High hydrostatic pressure stimulates n-C16 mineralization to CO2 by deep-ocean bacterium Alcanivorax xenomutans A28. RNA-protein interaction prediction using network-guided deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1