ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-02-12 DOI:10.1016/j.jneumeth.2025.110389
Max A van den Boom, Nicholas M Gregg, Gabriela Ojeda Valencia, Brian N Lundstrom, Kai J Miller, Dorien van Blooijs, Geertjan J M Huiskamp, Frans S S Leijten, Gregory A Worrell, Dora Hermes
{"title":"ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data.","authors":"Max A van den Boom, Nicholas M Gregg, Gabriela Ojeda Valencia, Brian N Lundstrom, Kai J Miller, Dorien van Blooijs, Geertjan J M Huiskamp, Frans S S Leijten, Gregory A Worrell, Dora Hermes","doi":"10.1016/j.jneumeth.2025.110389","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. However, the methods used for the detection of responses in cortico-cortical evoked potential (CCEP) data vary across studies, from visual inspection with manual annotation to a variety of automated methods.</p><p><strong>New method: </strong>To provide a robust workflow to process CCEP data and detect early evoked responses in a fully automated and reproducible fashion, we developed the Early Response (ER)-detect toolbox. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three early response detection methods, which were validated against 14 manually annotated CCEP datasets from two different clinical sites by four independent raters.</p><p><strong>Results: </strong>and comparison with existing methods: ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations.</p><p><strong>Conclusion: </strong>ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results for both research and clinical purposes.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110389"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2025.110389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. However, the methods used for the detection of responses in cortico-cortical evoked potential (CCEP) data vary across studies, from visual inspection with manual annotation to a variety of automated methods.

New method: To provide a robust workflow to process CCEP data and detect early evoked responses in a fully automated and reproducible fashion, we developed the Early Response (ER)-detect toolbox. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three early response detection methods, which were validated against 14 manually annotated CCEP datasets from two different clinical sites by four independent raters.

Results: and comparison with existing methods: ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations.

Conclusion: ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results for both research and clinical purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Editorial Board Establishing the electrical physiological feasibility of the rabbit median nerve as an experimental model for carpal tunnel syndrome. Enhancing therapeutic efficacy of Fingolimod via Intranasal Delivery in an Ethidium Bromide-induced Model of Multiple Sclerosis. Multi-view graph fusion of self-weighted EEG feature representations for speech imagery decoding. Direction of TIS envelope electric field: Perpendicular to the longitudinal axis of the hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1