Quinoa protein and its hydrolysate improve the fatigue resistance of mice: A potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism.

IF 4.8 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Nutritional Biochemistry Pub Date : 2025-02-12 DOI:10.1016/j.jnutbio.2025.109863
Yuanrong Tuo, Siwang Peng, Yiju Li, Jiamin Dang, Zhi Feng, Long Ding, Shuangkui Du, Xuebo Liu, Liying Wang
{"title":"Quinoa protein and its hydrolysate improve the fatigue resistance of mice: A potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism.","authors":"Yuanrong Tuo, Siwang Peng, Yiju Li, Jiamin Dang, Zhi Feng, Long Ding, Shuangkui Du, Xuebo Liu, Liying Wang","doi":"10.1016/j.jnutbio.2025.109863","DOIUrl":null,"url":null,"abstract":"<p><p>Fatigue is commonly marked by reduced endurance and impaired function, often linked to overexertion and chronic conditions. Quinoa (Chenopodium quinoa Willd.), with its rich amino acids and resilience to harsh conditions, offers a novel strategy for combating fatigue. This study explored the anti-fatigue effects of quinoa protein (QPro) and its hydrolysate (QPH) in weight-loaded swimming mice. After four weeks of oral administration, QPro and QPH significantly prolonged swimming duration, reduced serum fatigue biomarkers (lactic acid, urea nitrogen, lactate dehydrogenase, creatine kinase), and elevated glycogen reserves in the liver and muscle. RT-qPCR analysis indicated that QPH activated hepatic gluconeogenesis via G6Pase and PEPCK signaling and enhanced mitochondrial function through PGC-1α/NRF1/TFAM signaling in muscle. Additionally, QPro and QPH boosted antioxidant defenses by improving antioxidant enzyme activity, reducing malondialdehyde through the Nrf2/HO-1 pathway, and suppressing inflammation by reducing TNF-α and IL-6 levels. Network pharmacology identified 31 key targets involved in energy metabolism and inflammation, providing novel insights into the molecular mechanisms underlying the anti-fatigue properties of quinoa peptides. These findings highlight the potential of QPro and QPH as natural and bioactive ingredients in functional foods for enhancing endurance and mitigating fatigue.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109863"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.109863","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue is commonly marked by reduced endurance and impaired function, often linked to overexertion and chronic conditions. Quinoa (Chenopodium quinoa Willd.), with its rich amino acids and resilience to harsh conditions, offers a novel strategy for combating fatigue. This study explored the anti-fatigue effects of quinoa protein (QPro) and its hydrolysate (QPH) in weight-loaded swimming mice. After four weeks of oral administration, QPro and QPH significantly prolonged swimming duration, reduced serum fatigue biomarkers (lactic acid, urea nitrogen, lactate dehydrogenase, creatine kinase), and elevated glycogen reserves in the liver and muscle. RT-qPCR analysis indicated that QPH activated hepatic gluconeogenesis via G6Pase and PEPCK signaling and enhanced mitochondrial function through PGC-1α/NRF1/TFAM signaling in muscle. Additionally, QPro and QPH boosted antioxidant defenses by improving antioxidant enzyme activity, reducing malondialdehyde through the Nrf2/HO-1 pathway, and suppressing inflammation by reducing TNF-α and IL-6 levels. Network pharmacology identified 31 key targets involved in energy metabolism and inflammation, providing novel insights into the molecular mechanisms underlying the anti-fatigue properties of quinoa peptides. These findings highlight the potential of QPro and QPH as natural and bioactive ingredients in functional foods for enhancing endurance and mitigating fatigue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nutritional Biochemistry
Journal of Nutritional Biochemistry 医学-生化与分子生物学
CiteScore
9.50
自引率
3.60%
发文量
237
审稿时长
68 days
期刊介绍: Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology. Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.
期刊最新文献
In Vivo Metabolic Effects of Naringin in Reducing Oxidative Stress and Protecting the Vascular Endothelium in Dyslipidemic Mice. Ligusticum cycloprolactam ameliorates hyperuricemic nephropathy through inhibition of TLR4/NF-κB signaling. Quinoa protein and its hydrolysate improve the fatigue resistance of mice: A potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism. Editorial Board Dietary flavonoid actions on senescence, aging, and applications for health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1