Martin J O'Connor, Josef Hardi, Marcos Martínez-Romero, Sowmya Somasundaram, Brendan Honick, Stephen A Fisher, Ajay Pillai, Mark A Musen
{"title":"Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets.","authors":"Martin J O'Connor, Josef Hardi, Marcos Martínez-Romero, Sowmya Somasundaram, Brendan Honick, Stephen A Fisher, Ajay Pillai, Mark A Musen","doi":"10.1038/s41597-025-04589-6","DOIUrl":null,"url":null,"abstract":"<p><p>Scientists increasingly recognize the importance of providing rich, standards-adherent metadata to describe their experimental results. Despite the availability of sophisticated tools to assist in the process of data annotation, investigators generally seem to prefer to use spreadsheets when supplying metadata, despite the limitations of spreadsheets in ensuring metadata consistency and compliance with formal specifications. In this paper, we describe an end-to-end approach that supports spreadsheet-based entry of metadata, while ensuring rigorous adherence to community-based metadata standards and providing quality control. Our methods employ several key components, including customizable templates that represent metadata standards and that can inform the spreadsheets that investigators use to author metadata, controlled terminologies and ontologies for defining metadata values that can be accessed directly from a spreadsheet, and an interactive Web-based tool that allows users to rapidly identify and fix errors in their spreadsheet-based metadata. We demonstrate how this approach is being deployed in a biomedical consortium known as HuBMAP to define and collect metadata about a wide range of biological assays.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"265"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04589-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Scientists increasingly recognize the importance of providing rich, standards-adherent metadata to describe their experimental results. Despite the availability of sophisticated tools to assist in the process of data annotation, investigators generally seem to prefer to use spreadsheets when supplying metadata, despite the limitations of spreadsheets in ensuring metadata consistency and compliance with formal specifications. In this paper, we describe an end-to-end approach that supports spreadsheet-based entry of metadata, while ensuring rigorous adherence to community-based metadata standards and providing quality control. Our methods employ several key components, including customizable templates that represent metadata standards and that can inform the spreadsheets that investigators use to author metadata, controlled terminologies and ontologies for defining metadata values that can be accessed directly from a spreadsheet, and an interactive Web-based tool that allows users to rapidly identify and fix errors in their spreadsheet-based metadata. We demonstrate how this approach is being deployed in a biomedical consortium known as HuBMAP to define and collect metadata about a wide range of biological assays.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.