The efficacy of miR-141-3p to facilitate the healing of wounds and prevent scarring in mice by blocking the JNK/ERK pathway via HDAC6 silencing.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-02-15 DOI:10.1007/s11033-025-10347-z
YunTong Zhang, XuHui Wang, ZiShuo Wang, JianGuo Xu, Miao Xu, JieSong Zhou, Shuo Fang
{"title":"The efficacy of miR-141-3p to facilitate the healing of wounds and prevent scarring in mice by blocking the JNK/ERK pathway via HDAC6 silencing.","authors":"YunTong Zhang, XuHui Wang, ZiShuo Wang, JianGuo Xu, Miao Xu, JieSong Zhou, Shuo Fang","doi":"10.1007/s11033-025-10347-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Adipose-derived mesenchymal stem cells (ADSCs) exosomes (AD-Exos) are a novel and promising therapeutic approach for skin damage repair. This investigation seeks to assess the potential clinical utility of miR-141-3p found in AD-exos for expediting wound healing.</p><p><strong>Methods: </strong>ADSCs were isolated from the wounded patients' tissue and validated via flow cytometry, and the mineralization and adipogenic capabilities of ADSCs were assessed respectively. Additionally, exosomes were isolated and identified. miR-141-3p and HDAC6.protein level were tested. Full-thickness wound models were created on the backs of mice, HE staining, ELISA, and immunohistochemistry were used to assess the influences of AD-exos on wound healing, inflammation, and new blood vessel formation Western blot was to assess the related-protein levels of JNK/ERK pathway. AQ1 Meanwhile, Dual-Luciferase assay confirmed the relationship between miR-141-3p and HDAC6.</p><p><strong>Results: </strong>The isolated cells highly express surface markers of mesenchymal stem cells and possess the potential for multidirectional differentiation, confirming them to be ADSCs. And miR-141-3p down-regulated but HDAC6 up-regulated in the serum and AD-exos of wounded patients. miR-141-3p could negatively modulate HDAC6. The miR-141-3p in AD-exos accelerated wound healing in mice, mitigated inflammatory responses and scarring in the injured skin tissue, and promoted angiogenesis, moreover, AD-exos could diminish the phosphorylation of JNK and ERK, while HDAC6 overexpressed could weaken these impacts.</p><p><strong>Conclusion: </strong>miR-141-3p in AD-exos can target down regulate HDAC6 expression and inhibit JNK/ERK signaling pathway activation, thereby reducing wound inflammation and promoting angiogenesis and wound healing in mice.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"237"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10347-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Adipose-derived mesenchymal stem cells (ADSCs) exosomes (AD-Exos) are a novel and promising therapeutic approach for skin damage repair. This investigation seeks to assess the potential clinical utility of miR-141-3p found in AD-exos for expediting wound healing.

Methods: ADSCs were isolated from the wounded patients' tissue and validated via flow cytometry, and the mineralization and adipogenic capabilities of ADSCs were assessed respectively. Additionally, exosomes were isolated and identified. miR-141-3p and HDAC6.protein level were tested. Full-thickness wound models were created on the backs of mice, HE staining, ELISA, and immunohistochemistry were used to assess the influences of AD-exos on wound healing, inflammation, and new blood vessel formation Western blot was to assess the related-protein levels of JNK/ERK pathway. AQ1 Meanwhile, Dual-Luciferase assay confirmed the relationship between miR-141-3p and HDAC6.

Results: The isolated cells highly express surface markers of mesenchymal stem cells and possess the potential for multidirectional differentiation, confirming them to be ADSCs. And miR-141-3p down-regulated but HDAC6 up-regulated in the serum and AD-exos of wounded patients. miR-141-3p could negatively modulate HDAC6. The miR-141-3p in AD-exos accelerated wound healing in mice, mitigated inflammatory responses and scarring in the injured skin tissue, and promoted angiogenesis, moreover, AD-exos could diminish the phosphorylation of JNK and ERK, while HDAC6 overexpressed could weaken these impacts.

Conclusion: miR-141-3p in AD-exos can target down regulate HDAC6 expression and inhibit JNK/ERK signaling pathway activation, thereby reducing wound inflammation and promoting angiogenesis and wound healing in mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
BLM knockdown promotes cells autophagy via p53-AMPK-mTOR pathway in triple negative breast cancer cells. Comprehensive review and outline of genotypes and phenotypes of Arboleda-Tham syndrome spectrum: insights from novel variants. Identification of a missing Pictet-Spenglerase in the Gloriosa superba L. colchicine biosynthesis pathway. Low-intensity pulsed ultrasound promotes proliferation and differentiation of neural stem cells to enhance spinal cord injury recovery. Molecular pathways: the quest for effective MAO-B inhibitors in neurodegenerative therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1