Long-term exposure to anti-GluA3 antibodies triggers functional and structural changes in hippocampal neurons

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2025-02-13 DOI:10.1016/j.nbd.2025.106843
Maria Italia , Alessio Spinola , Barbara Borroni , Monica DiLuca , Fabrizio Gardoni
{"title":"Long-term exposure to anti-GluA3 antibodies triggers functional and structural changes in hippocampal neurons","authors":"Maria Italia ,&nbsp;Alessio Spinola ,&nbsp;Barbara Borroni ,&nbsp;Monica DiLuca ,&nbsp;Fabrizio Gardoni","doi":"10.1016/j.nbd.2025.106843","DOIUrl":null,"url":null,"abstract":"<div><div>Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) are implicated in various neurological disorders, including Rasmussen's encephalitis, epilepsy, and frontotemporal dementia. However, their precise role in disease pathology remains insufficiently understood. This study investigated the long-term effects of human anti-GluA3 antibodies (anti-GluA3 hIgGs) on neuronal morphology and function using primary rat hippocampal neurons. We found that long-term exposure to anti-GluA3 hIgGs leads to the delocalisation of GluA3-containing AMPARs at extrasynaptic sites. This molecular event is correlated to dendritic arbor reorganisation, characterised by increased complexity near the soma and progressive simplification in distal regions as well as an increase in the number of shorter dendrites and a corresponding loss of longer ones, thus suggesting altered dendritic pruning dynamics. The altered neuronal architecture was accompanied by an increase in the number of dendritic spines and a modification of their morphology, indicating relevant changes in synaptic connectivity. Functionally, anti-GluA3 hIgGs significantly enhanced NMDA receptor-mediated postsynaptic Ca<sup>2+</sup> currents and increased nuclear levels of phosphorylated cAMP response element-binding protein (CREB), indicating altered signal transduction. Overall, our study provides critical insights into the role of anti-GluA3 hIgGs in disease and potentially identifies new therapeutic targets for pathological conditions where they are present.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"207 ","pages":"Article 106843"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125000592","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) are implicated in various neurological disorders, including Rasmussen's encephalitis, epilepsy, and frontotemporal dementia. However, their precise role in disease pathology remains insufficiently understood. This study investigated the long-term effects of human anti-GluA3 antibodies (anti-GluA3 hIgGs) on neuronal morphology and function using primary rat hippocampal neurons. We found that long-term exposure to anti-GluA3 hIgGs leads to the delocalisation of GluA3-containing AMPARs at extrasynaptic sites. This molecular event is correlated to dendritic arbor reorganisation, characterised by increased complexity near the soma and progressive simplification in distal regions as well as an increase in the number of shorter dendrites and a corresponding loss of longer ones, thus suggesting altered dendritic pruning dynamics. The altered neuronal architecture was accompanied by an increase in the number of dendritic spines and a modification of their morphology, indicating relevant changes in synaptic connectivity. Functionally, anti-GluA3 hIgGs significantly enhanced NMDA receptor-mediated postsynaptic Ca2+ currents and increased nuclear levels of phosphorylated cAMP response element-binding protein (CREB), indicating altered signal transduction. Overall, our study provides critical insights into the role of anti-GluA3 hIgGs in disease and potentially identifies new therapeutic targets for pathological conditions where they are present.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
A missense variant in DEPDC5 resulted in abnormal morphology and increased seizure susceptibility and mortality through regulating mTOR signaling. Lack of neuroprotection after systemic administration of the soluble TNF inhibitor XPro1595 in an rAAV6-α-Syn + PFFs-induced rat model for Parkinson's disease. Long-term exposure to anti-GluA3 antibodies triggers functional and structural changes in hippocampal neurons Attenuated neurotoxicity after repeated methamphetamine binges linked to dopamine transporter (DAT) decline The impact of gut microbiota on the occurrence, treatment, and prognosis of ischemic stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1