OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-02-14 DOI:10.1038/s41597-024-04259-z
Mustafa Arikan, James Willoughby, Sevim Ongun, Ferenc Sallo, Andrea Montesel, Hend Ahmed, Ahmed Hagag, Marius Book, Henrik Faatz, Maria Vittoria Cicinelli, Amani A Fawzi, Dominika Podkowinski, Marketa Cilkova, Diana Morais De Almeida, Moussa Zouache, Ganesham Ramsamy, Watjana Lilaonitkul, Adam M Dubis
{"title":"OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers.","authors":"Mustafa Arikan, James Willoughby, Sevim Ongun, Ferenc Sallo, Andrea Montesel, Hend Ahmed, Ahmed Hagag, Marius Book, Henrik Faatz, Maria Vittoria Cicinelli, Amani A Fawzi, Dominika Podkowinski, Marketa Cilkova, Diana Morais De Almeida, Moussa Zouache, Ganesham Ramsamy, Watjana Lilaonitkul, Adam M Dubis","doi":"10.1038/s41597-024-04259-z","DOIUrl":null,"url":null,"abstract":"<p><p>Publicly available open-access OCT datasets for retinal layer segmentation have been limited in scope, often being small in size, specific to a single disease, or containing only one grading. This dataset improves upon this with multi-grader and multi-disease labels for training machine learning-based algorithms. The proposed dataset covers three subsets of scans (Age-related Macular Degeneration, Diabetic Macular Edema, and healthy) and annotations for two types of tasks (semantic segmentation and object detection). This dataset compiled 5016 pixel-wise manual labels for 1672 OCT scans featuring 5 layer boundaries for three different disease classes to support development of automatic techniques. A subset of data (566 scans across 9 classes of disease biomarkers) was subsequently labeled for disease features for 4698 bounding box annotations. To minimize bias, images were shuffled and distributed among graders. Retinal layers were corrected, and outliers identified using the interquartile range (IQR). This step was iterated three times, improving layer annotations' quality iteratively, ensuring a reliable dataset for automated retinal image analysis.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"267"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04259-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Publicly available open-access OCT datasets for retinal layer segmentation have been limited in scope, often being small in size, specific to a single disease, or containing only one grading. This dataset improves upon this with multi-grader and multi-disease labels for training machine learning-based algorithms. The proposed dataset covers three subsets of scans (Age-related Macular Degeneration, Diabetic Macular Edema, and healthy) and annotations for two types of tasks (semantic segmentation and object detection). This dataset compiled 5016 pixel-wise manual labels for 1672 OCT scans featuring 5 layer boundaries for three different disease classes to support development of automatic techniques. A subset of data (566 scans across 9 classes of disease biomarkers) was subsequently labeled for disease features for 4698 bounding box annotations. To minimize bias, images were shuffled and distributed among graders. Retinal layers were corrected, and outliers identified using the interquartile range (IQR). This step was iterated three times, improving layer annotations' quality iteratively, ensuring a reliable dataset for automated retinal image analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A Comprehensive Dataset of Surface Water Quality Spanning 1940-2023 for Empirical and ML Adopted Research. A large open access dataset of transillumination imaging the toward realization of optical computed tomography. A neuroimaging dataset during sequential color qualia similarity judgments with and without reports. An ageing study of twenty 18650 lithium-ion Graphite/LFP cells in first and second life use. An electronic toll collection gateway BLE RSSI dataset for localization of smartphones in vehicular scenarios.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1