Aristolochic acid-induced DNA adduct formation triggers acute DNA damage response in rat kidney proximal tubular cells

IF 2.9 3区 医学 Q2 TOXICOLOGY Toxicology letters Pub Date : 2025-02-13 DOI:10.1016/j.toxlet.2025.02.006
Miyu Komatsu, Takeshi Funakoshi, Toshihiko Aki, Kana Unuma
{"title":"Aristolochic acid-induced DNA adduct formation triggers acute DNA damage response in rat kidney proximal tubular cells","authors":"Miyu Komatsu,&nbsp;Takeshi Funakoshi,&nbsp;Toshihiko Aki,&nbsp;Kana Unuma","doi":"10.1016/j.toxlet.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Aristolochic acid nephropathy (AAN) is a form of acute kidney injury triggered by the ingestion of aristolochic acid (AA), characterized by significant degeneration and loss of cells in the proximal tubules. Previous reports of AA-induced acute kidney injury have reported that AA-induced cytotoxicity can occur within a short period, up to 24 h; however, there are few reports on the relationship between AA-DNA adduct formation and cytotoxic mechanism during the acute phase. In this study, we aimed to elucidate the toxicological mechanisms in the initial phase of AA exposure by examining the effects of AA on NRK-52E rat proximal tubular cells within 24 h. We detected the formation of AA-DNA adducts as early as 4 h post-exposure, indicating that 50 μM of AA causes DNA damage. The DNA damage response pathway was activated, peaking at 8 h post-exposure. Additionally, we observed an increasing trend of G1 phase cell cycle arrest after 8 h, followed by a significant decline in cell viability at 16 h. These findings suggest that 50 μM of AA induces rapid DNA damage in NRK-52E cells, primarily through the formation of AA-DNA adducts, ultimately leading to G1 phase cell cycle arrest.</div></div>","PeriodicalId":23206,"journal":{"name":"Toxicology letters","volume":"406 ","pages":"Pages 1-8"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037842742500030X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aristolochic acid nephropathy (AAN) is a form of acute kidney injury triggered by the ingestion of aristolochic acid (AA), characterized by significant degeneration and loss of cells in the proximal tubules. Previous reports of AA-induced acute kidney injury have reported that AA-induced cytotoxicity can occur within a short period, up to 24 h; however, there are few reports on the relationship between AA-DNA adduct formation and cytotoxic mechanism during the acute phase. In this study, we aimed to elucidate the toxicological mechanisms in the initial phase of AA exposure by examining the effects of AA on NRK-52E rat proximal tubular cells within 24 h. We detected the formation of AA-DNA adducts as early as 4 h post-exposure, indicating that 50 μM of AA causes DNA damage. The DNA damage response pathway was activated, peaking at 8 h post-exposure. Additionally, we observed an increasing trend of G1 phase cell cycle arrest after 8 h, followed by a significant decline in cell viability at 16 h. These findings suggest that 50 μM of AA induces rapid DNA damage in NRK-52E cells, primarily through the formation of AA-DNA adducts, ultimately leading to G1 phase cell cycle arrest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马兜铃酸诱导的 DNA 加合物形成引发大鼠肾近端肾小管细胞的急性 DNA 损伤反应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology letters
Toxicology letters 医学-毒理学
CiteScore
7.10
自引率
2.90%
发文量
897
审稿时长
33 days
期刊介绍: An international journal for the rapid publication of novel reports on a range of aspects of toxicology, especially mechanisms of toxicity.
期刊最新文献
Editorial Board Lithium attenuates ketamine-induced long-term neurotoxicity through DISC1-mediated GSK-3β/β-catenin and ERK/CREB pathways Modernizing toxicology: The importance of accessible NAM training Discovery of non-steroidal aldo-keto reductase 1D1 inhibitors through automated screening and in vitro evaluation Zanamivir alleviates ethanol intoxication through activating catalase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1