Wontae Hwang, Paeton L Wantuch, Biana Bernshtein, Julia A Zhiteneva, Damien M Slater, Kian Hutt Vater, Sushmita Sridhar, Elizabeth Oliver, David J Roach, Sowmya R Rao, Sarah E Turbett, Cory J Knoot, Christian M Harding, Mohammed Nurul Amin, Alan S Cross, Regina C LaRocque, David A Rosen, Jason B Harris
{"title":"Antibody responses in Klebsiella pneumoniae bloodstream infection: a prospective cohort study.","authors":"Wontae Hwang, Paeton L Wantuch, Biana Bernshtein, Julia A Zhiteneva, Damien M Slater, Kian Hutt Vater, Sushmita Sridhar, Elizabeth Oliver, David J Roach, Sowmya R Rao, Sarah E Turbett, Cory J Knoot, Christian M Harding, Mohammed Nurul Amin, Alan S Cross, Regina C LaRocque, David A Rosen, Jason B Harris","doi":"10.1016/j.lanmic.2024.100988","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Klebsiella pneumoniae is a leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive K pneumoniae. We sought to determine whether the O-specific polysaccharide antigen is immunogenic in humans with K pneumoniae bloodstream infection. We also sought to define the cross-reactivity of human antibody responses among structurally related K pneumoniae O-specific polysaccharide subtypes and to assess the effect of capsule production on O-specific polysaccharide-targeted antibody binding and function.</p><p><strong>Methods: </strong>In this prospective cohort study, we compared plasma antibody responses to O-specific polysaccharide in a cohort of consecutively enrolled patients with K pneumoniae bloodstream infection with controls, specifically a cohort of healthy individuals and a cohort of individuals with Enterococcus spp bloodstream infection. Patients were enrolled at the Massachusetts General Hospital, a tertiary hospital with affiliated clinics in the USA. We excluded patients whose isolates were not confirmed to be K pneumoniae by whole-genome sequencing. The primary outcome was the measurement of plasma IgG, IgM, and IgA antibody responses. We performed flow cytometry to measure the effects of K pneumoniae capsule production on O-specific polysaccharide antibody binding and O-specific polysaccharide antibody-mediated complement deposition, using patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates.</p><p><strong>Findings: </strong>We enrolled 129 consecutive patients with suspected K pneumoniae bloodstream infection between July 24, 2021, and August 4, 2022, of whom 69 patients (44 [64%] male and 25 [36%] female) with confirmed K pneumoniae bloodstream infection were eligible for immunological evaluation. Common O-specific polysaccharide serotypes (O1, O2, O3, and O5) accounted for 57 (83%) of 69 infections. O-specific polysaccharide was immunogenic in patients with K pneumoniae bloodstream infection, and peak O-specific polysaccharide-IgG antibody responses in patients were ten-fold to 30-fold higher than antibody responses detected in healthy controls, depending on the serotype. There was cross-reactivity among similar O-specific polysaccharide subtypes, including the O1v1 and O1v2, O2v1 and O2v2, and O3 and O3b subtypes, as well as between the O1 and O2 types. Capsule produced by both hyperencapsulated and non-hyperencapsulated K pneumoniae inhibited O-specific polysaccharide-targeted antibody binding and function.</p><p><strong>Interpretation: </strong>O-specific polysaccharide was immunogenic in patients with K pneumoniae bloodstream infection, supporting its potential as a candidate vaccine antigen. The cross-reactivity observed between similar O-specific polysaccharide subtypes in patients with K pneumoniae bloodstream infection suggests that it might not be necessary to include all subtypes in an O-specific polysaccharide-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with O-specific polysaccharide antibody binding. This finding could limit the effectiveness of vaccines that exclusively target O-specific polysaccharide.</p><p><strong>Funding: </strong>National Institute of Allergy and Infectious Diseases at the National Institutes of Health.</p>","PeriodicalId":46633,"journal":{"name":"Lancet Microbe","volume":" ","pages":"100988"},"PeriodicalIF":20.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Microbe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.lanmic.2024.100988","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Klebsiella pneumoniae is a leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive K pneumoniae. We sought to determine whether the O-specific polysaccharide antigen is immunogenic in humans with K pneumoniae bloodstream infection. We also sought to define the cross-reactivity of human antibody responses among structurally related K pneumoniae O-specific polysaccharide subtypes and to assess the effect of capsule production on O-specific polysaccharide-targeted antibody binding and function.
Methods: In this prospective cohort study, we compared plasma antibody responses to O-specific polysaccharide in a cohort of consecutively enrolled patients with K pneumoniae bloodstream infection with controls, specifically a cohort of healthy individuals and a cohort of individuals with Enterococcus spp bloodstream infection. Patients were enrolled at the Massachusetts General Hospital, a tertiary hospital with affiliated clinics in the USA. We excluded patients whose isolates were not confirmed to be K pneumoniae by whole-genome sequencing. The primary outcome was the measurement of plasma IgG, IgM, and IgA antibody responses. We performed flow cytometry to measure the effects of K pneumoniae capsule production on O-specific polysaccharide antibody binding and O-specific polysaccharide antibody-mediated complement deposition, using patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates.
Findings: We enrolled 129 consecutive patients with suspected K pneumoniae bloodstream infection between July 24, 2021, and August 4, 2022, of whom 69 patients (44 [64%] male and 25 [36%] female) with confirmed K pneumoniae bloodstream infection were eligible for immunological evaluation. Common O-specific polysaccharide serotypes (O1, O2, O3, and O5) accounted for 57 (83%) of 69 infections. O-specific polysaccharide was immunogenic in patients with K pneumoniae bloodstream infection, and peak O-specific polysaccharide-IgG antibody responses in patients were ten-fold to 30-fold higher than antibody responses detected in healthy controls, depending on the serotype. There was cross-reactivity among similar O-specific polysaccharide subtypes, including the O1v1 and O1v2, O2v1 and O2v2, and O3 and O3b subtypes, as well as between the O1 and O2 types. Capsule produced by both hyperencapsulated and non-hyperencapsulated K pneumoniae inhibited O-specific polysaccharide-targeted antibody binding and function.
Interpretation: O-specific polysaccharide was immunogenic in patients with K pneumoniae bloodstream infection, supporting its potential as a candidate vaccine antigen. The cross-reactivity observed between similar O-specific polysaccharide subtypes in patients with K pneumoniae bloodstream infection suggests that it might not be necessary to include all subtypes in an O-specific polysaccharide-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with O-specific polysaccharide antibody binding. This finding could limit the effectiveness of vaccines that exclusively target O-specific polysaccharide.
Funding: National Institute of Allergy and Infectious Diseases at the National Institutes of Health.
期刊介绍:
The Lancet Microbe is a gold open access journal committed to publishing content relevant to clinical microbiologists worldwide, with a focus on studies that advance clinical understanding, challenge the status quo, and advocate change in health policy.