DECODE-3DViz: Efficient WebGL-Based High-Fidelity Visualization of Large-Scale Images using Level of Detail and Data Chunk Streaming.

Mohammed A AboArab, Vassiliki T Potsika, Andrzej Skalski, Maciej Stanuch, George Gkois, Igor Koncar, David Matejevic, Alexis Theodorou, Sylvia Vagena, Fragiska Sigala, Dimitrios I Fotiadis
{"title":"DECODE-3DViz: Efficient WebGL-Based High-Fidelity Visualization of Large-Scale Images using Level of Detail and Data Chunk Streaming.","authors":"Mohammed A AboArab, Vassiliki T Potsika, Andrzej Skalski, Maciej Stanuch, George Gkois, Igor Koncar, David Matejevic, Alexis Theodorou, Sylvia Vagena, Fragiska Sigala, Dimitrios I Fotiadis","doi":"10.1007/s10278-025-01430-9","DOIUrl":null,"url":null,"abstract":"<p><p>The DECODE-3DViz pipeline represents a major advancement in the web-based visualization of large-scale medical imaging data, particularly for peripheral artery computed tomography images. This research addresses the critical challenges of rendering high-resolution volumetric datasets via WebGL technology. By integrating progressive chunk streaming and level of detail (LOD) algorithms, DECODE-3DViz optimizes the rendering process for real-time interaction and high-fidelity visualization. The system efficiently manages WebGL texture size constraints and browser memory limitations, ensuring smooth performance even with extensive datasets. A comparative evaluation against state-of-the-art visualization tools demonstrates DECODE-3DViz's superior performance, achieving up to a 98% reduction in rendering time compared with that of competitors and maintaining a high frame rate of up to 144 FPS. Furthermore, the system exhibits exceptional GPU memory efficiency, utilizing as little as 2.6 MB on desktops, which is significantly less than the over 100 MB required by other tools. User feedback, collected through a comprehensive questionnaire, revealed high satisfaction with the tool's performance, particularly in areas such as structure definition and diagnostic capability, with an average score of 4.3 out of 5. These enhancements enable detailed and accurate visualizations of the peripheral vasculature, improving diagnostic accuracy and supporting better clinical outcomes. The DECODE-3DViz tool is open source and can be accessed at https://github.com/mohammed-abo-arab/3D_WebGL_VolumeRendering.git .</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":"4148-4166"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12701164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01430-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The DECODE-3DViz pipeline represents a major advancement in the web-based visualization of large-scale medical imaging data, particularly for peripheral artery computed tomography images. This research addresses the critical challenges of rendering high-resolution volumetric datasets via WebGL technology. By integrating progressive chunk streaming and level of detail (LOD) algorithms, DECODE-3DViz optimizes the rendering process for real-time interaction and high-fidelity visualization. The system efficiently manages WebGL texture size constraints and browser memory limitations, ensuring smooth performance even with extensive datasets. A comparative evaluation against state-of-the-art visualization tools demonstrates DECODE-3DViz's superior performance, achieving up to a 98% reduction in rendering time compared with that of competitors and maintaining a high frame rate of up to 144 FPS. Furthermore, the system exhibits exceptional GPU memory efficiency, utilizing as little as 2.6 MB on desktops, which is significantly less than the over 100 MB required by other tools. User feedback, collected through a comprehensive questionnaire, revealed high satisfaction with the tool's performance, particularly in areas such as structure definition and diagnostic capability, with an average score of 4.3 out of 5. These enhancements enable detailed and accurate visualizations of the peripheral vasculature, improving diagnostic accuracy and supporting better clinical outcomes. The DECODE-3DViz tool is open source and can be accessed at https://github.com/mohammed-abo-arab/3D_WebGL_VolumeRendering.git .

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DECODE-3DViz:高效的基于webgl的大规模图像高保真可视化,使用细节水平和数据块流。
DECODE-3DViz 管道代表了基于网络的大规模医学成像数据可视化领域的一大进步,尤其是外周动脉计算机断层扫描图像。这项研究解决了通过 WebGL 技术渲染高分辨率容积数据集的关键难题。通过整合渐进式块流和细节级别(LOD)算法,DECODE-3DViz 优化了渲染过程,实现了实时交互和高保真可视化。该系统能有效地管理 WebGL 纹理大小限制和浏览器内存限制,即使在使用大量数据集时也能确保流畅的性能。与最先进的可视化工具进行的对比评估表明,DECODE-3DViz 性能优越,与竞争对手相比,渲染时间最多可缩短 98%,帧率最高可达 144 FPS。此外,该系统还表现出卓越的 GPU 内存效率,在台式机上仅占用 2.6 MB 内存,大大低于其他工具所需的 100 MB 内存。通过综合问卷调查收集的用户反馈显示,他们对该工具的性能非常满意,尤其是在结构定义和诊断能力等方面,平均得分为 4.3 分(满分 5 分)。这些增强功能实现了外周血管详细而准确的可视化,提高了诊断的准确性,为更好的临床结果提供了支持。DECODE-3DViz 工具是开源的,可在 https://github.com/mohammed-abo-arab/3D_WebGL_VolumeRendering.git 上访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Retinal Image Matching: A Modality-Resistant Descriptor Using Directional Anisotropic Texton-Like Features and Evaluation Across Diverse Datasets. Generating Lung Ventilation Images with Virtual Non-contrast Images from Dual-Energy CT Scans Using Multi-task Conditional Generative Adversarial Networks. COPD-TransNet: A Swin Transformer Network with Quantitative Emphysema Feature Fusion for COPD Detection and Staging from Opportunistic CT Scans. Uncertainty Quantification in Hemodynamic Metrics from 4D Flow MRI with Super-resolution in a Carotid Bifurcation Model. Comparative Analysis of Different Methods in the Quantification of Bone Matrix in Irradiated Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1