Bryan Sanders, Monica Lancheros, Marion Bourqui, Marina Laganaro
{"title":"Brain Dynamics of Speech Modes Encoding: Loud and Whispered Speech Versus Standard Speech.","authors":"Bryan Sanders, Monica Lancheros, Marion Bourqui, Marina Laganaro","doi":"10.1007/s10548-025-01108-z","DOIUrl":null,"url":null,"abstract":"<p><p>Loud speech and whispered speech are two distinct speech modes that are part of daily verbal exchanges, but that involve a different employment of the speech apparatus. However, a clear account of whether and when the motor speech (or phonetic) encoding of these speech modes differs from standard speech has not been provided yet. Here, we addressed this question using Electroencephalography (EEG)/Event related potential (ERP) approaches during a delayed production task to contrast the production of speech sequences (pseudowords) when speaking normally or under a specific speech mode: loud speech in experiment 1 and whispered speech in experiment 2. Behavioral results demonstrated that non-standard speech modes entail a behavioral encoding cost in terms of production latency. Standard speech and speech modes' ERPs were characterized by the same sequence of microstate maps, suggesting that the same brain processes are involved to produce speech under a specific speech mode. Only loud speech entailed electrophysiological modulations relative to standard speech in terms of waveform amplitudes but also temporal distribution and strength of neural recruitment of the same sequence of microstates during a large time window (from approximatively - 220 ms to - 100 ms) preceding the vocal onset. Alternatively, the electrophysiological activity of whispered speech was similar in nature to standard speech. On the whole, speech modes and standard speech seem to be encoded through the same brain processes but the degree of adjustments required seem to vary subsequently across speech modes.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"31"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01108-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Loud speech and whispered speech are two distinct speech modes that are part of daily verbal exchanges, but that involve a different employment of the speech apparatus. However, a clear account of whether and when the motor speech (or phonetic) encoding of these speech modes differs from standard speech has not been provided yet. Here, we addressed this question using Electroencephalography (EEG)/Event related potential (ERP) approaches during a delayed production task to contrast the production of speech sequences (pseudowords) when speaking normally or under a specific speech mode: loud speech in experiment 1 and whispered speech in experiment 2. Behavioral results demonstrated that non-standard speech modes entail a behavioral encoding cost in terms of production latency. Standard speech and speech modes' ERPs were characterized by the same sequence of microstate maps, suggesting that the same brain processes are involved to produce speech under a specific speech mode. Only loud speech entailed electrophysiological modulations relative to standard speech in terms of waveform amplitudes but also temporal distribution and strength of neural recruitment of the same sequence of microstates during a large time window (from approximatively - 220 ms to - 100 ms) preceding the vocal onset. Alternatively, the electrophysiological activity of whispered speech was similar in nature to standard speech. On the whole, speech modes and standard speech seem to be encoded through the same brain processes but the degree of adjustments required seem to vary subsequently across speech modes.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.