{"title":"ILC3s regulate the gut microbiota via host intestinal galactosylation to limit pathogen infection in mice","authors":"Wenyan Wang, Na Li, Hongkai Xu, Siting Wei, Yiping Li, Jiayao Ou, Jiacheng Hao, Jing Zhang, Liyou Dong, Ying Qiu, Xiaoyu Hu, Yang-Xin Fu, Xiaohuan Guo","doi":"10.1038/s41564-025-01933-9","DOIUrl":null,"url":null,"abstract":"<p>Host immunity and commensal bacteria synergistically maintain intestinal homeostasis and mediate colonization resistance against pathogens. However, the molecular and cellular mechanisms remain unclear. Here, with a mouse infection model of <i>Citrobacter rodentium</i>, a natural mouse intestinal pathogen that mimics human enteropathogenic <i>Escherichia coli</i> and enterohaemorrhagic <i>Escherichia coli</i>, we find that group 3 innate lymphoid cells (ILC3s) can protect the host from infection by regulating gut microbiota. Mechanistically, ILC3s can control gut dysbiosis through IL-22-dependent regulation of intestinal galactosylation in mice. ILC3 deficiency led to an increase in intestinal galactosylation and the expansion of commensal <i>Akkermansia muciniphila</i> in colonic mucus. The increased <i>A. muciniphila</i> and <i>A. muciniphila</i>-derived metabolic product succinate further promoted the expression of pathogen virulence factors <i>tir</i> and <i>ler</i>, resulting in increased susceptibility to <i>C. rodentium</i> infection. Together, our data reveal a mechanism for ILC3s in protecting against pathogen infection through the regulation of intestinal glycosylation and gut microbiota metabolism.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-01933-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Host immunity and commensal bacteria synergistically maintain intestinal homeostasis and mediate colonization resistance against pathogens. However, the molecular and cellular mechanisms remain unclear. Here, with a mouse infection model of Citrobacter rodentium, a natural mouse intestinal pathogen that mimics human enteropathogenic Escherichia coli and enterohaemorrhagic Escherichia coli, we find that group 3 innate lymphoid cells (ILC3s) can protect the host from infection by regulating gut microbiota. Mechanistically, ILC3s can control gut dysbiosis through IL-22-dependent regulation of intestinal galactosylation in mice. ILC3 deficiency led to an increase in intestinal galactosylation and the expansion of commensal Akkermansia muciniphila in colonic mucus. The increased A. muciniphila and A. muciniphila-derived metabolic product succinate further promoted the expression of pathogen virulence factors tir and ler, resulting in increased susceptibility to C. rodentium infection. Together, our data reveal a mechanism for ILC3s in protecting against pathogen infection through the regulation of intestinal glycosylation and gut microbiota metabolism.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.