Ya-Li Hu, Ding Dong, Jian-Jun Zhao, Kun Hu, Ling-Mei Kong, Yun-Xia Hu, Xing-Ren Li, Song-Yu Li, Yin Nian, Gang Xu
{"title":"5-Methylated polyprenylated acylphloroglucinol derivatives as low-voltage-gated Ca2+ channel inhibitors","authors":"Ya-Li Hu, Ding Dong, Jian-Jun Zhao, Kun Hu, Ling-Mei Kong, Yun-Xia Hu, Xing-Ren Li, Song-Yu Li, Yin Nian, Gang Xu","doi":"10.1039/d4qo02233e","DOIUrl":null,"url":null,"abstract":"Ascynols A–C (<strong>1–3</strong>), three polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives sharing an unusual cyclopentane core, were isolated from the aerial parts of <em>Hypericum ascyron</em> L. Compounds <strong>1</strong> and <strong>3</strong> were elucidated to possess two novel 6/6/5/5 and 5/5 architectures, respectively. Additionally, twenty-four analogues (<strong>4–27</strong>) were also obtained, among which fourteen are new compounds. These compounds represent 11 different structural types and can be categorized into 6 groups based on their biosynthetic origin. Their structures were determined from spectroscopic analysis, quantum chemical calculation, and X-ray diffraction data. All the isolates are decorated with a methyl group at C-5 instead of a prenyl or geranyl group as in most other PPAPs. Biologically, sixteen compounds were identified as potent inhibitors of low-voltage-gated calcium channels (LVGCCs; Ca<small><sub>v</sub></small>3.1–3.3), with IC<small><sub>50</sub></small> values ranging from 1.89 to 16.55 μmol L<small><sup>−1</sup></small>. Moreover, compound <strong>23</strong> exhibited strong and dose-dependent antinociception in an acetic acid-induced mouse model of visceral pain and its effect is comparable to that of Z944, a representative LVGCC inhibitor under clinical trial.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"64 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo02233e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ascynols A–C (1–3), three polycyclic polyprenylated acylphloroglucinol (PPAP) derivatives sharing an unusual cyclopentane core, were isolated from the aerial parts of Hypericum ascyron L. Compounds 1 and 3 were elucidated to possess two novel 6/6/5/5 and 5/5 architectures, respectively. Additionally, twenty-four analogues (4–27) were also obtained, among which fourteen are new compounds. These compounds represent 11 different structural types and can be categorized into 6 groups based on their biosynthetic origin. Their structures were determined from spectroscopic analysis, quantum chemical calculation, and X-ray diffraction data. All the isolates are decorated with a methyl group at C-5 instead of a prenyl or geranyl group as in most other PPAPs. Biologically, sixteen compounds were identified as potent inhibitors of low-voltage-gated calcium channels (LVGCCs; Cav3.1–3.3), with IC50 values ranging from 1.89 to 16.55 μmol L−1. Moreover, compound 23 exhibited strong and dose-dependent antinociception in an acetic acid-induced mouse model of visceral pain and its effect is comparable to that of Z944, a representative LVGCC inhibitor under clinical trial.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.