Charge Polarization Boosting Electrochemical Urea Synthesis by Co‐Reduction of CO2 and Nitrite in Dilute Concentrations with a Unity Carbon Selectivity

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-17 DOI:10.1002/anie.202500262
Zhihao Feng, Lu-Hua Zhang, Yabo Guo, Jiangyi Guo, Fei Li, Fengshou Yu
{"title":"Charge Polarization Boosting Electrochemical Urea Synthesis by Co‐Reduction of CO2 and Nitrite in Dilute Concentrations with a Unity Carbon Selectivity","authors":"Zhihao Feng, Lu-Hua Zhang, Yabo Guo, Jiangyi Guo, Fei Li, Fengshou Yu","doi":"10.1002/anie.202500262","DOIUrl":null,"url":null,"abstract":"Synthesis of urea through electrocatalytic coupling reaction of CO2 with nitrite (NO2‐) represents a sustainable means to substitute the conventional energy‐intensive urea synthetic protocol. The direct conversion of dilute NO2‐ in real wastewaters to urea with high efficiency is still a significant challenge, as C‐intermediates tend to go through an extensive reduction achieving mostly C‐containing productions due to the lack of N‐intermediates, originating from slow diffusion rate of NO2‐. Herein, we report the charge‐polarized Feδ‐‐Cuδ+ dual sites in metal/carbon heterojunction material (Cu@Fe‐N‐C) for co‐reduction of CO2 and dilute NO2‐ solution (100 ppm NO2‐‐N). The electron‐rich single Fe atoms dispersed N‐doped carbon (Fe‐N‐C) restrain *CO desorption, and the electron‐deficient Cu nanoparticles (Cu) promote the deep reduction of NO2– to *NH2. As a result, the obtained Cu@Fe‐N‐C exhibits a high Faradic efficiency for urea of 50.05% with a yield of 850.57 mg h‐1 g‐1 at ‐0.35 V (vs. RHE) in a flow cell. Moreover, Curea‐selectivity reaches to 100% and a near‐unity selectivity for the value‐added urea and NH3 is realized. The present results provide a valuable reference for the design of new catalysts for efficient synthesis of C‐N compounds in dilute NO2‐ solution.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"18 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesis of urea through electrocatalytic coupling reaction of CO2 with nitrite (NO2‐) represents a sustainable means to substitute the conventional energy‐intensive urea synthetic protocol. The direct conversion of dilute NO2‐ in real wastewaters to urea with high efficiency is still a significant challenge, as C‐intermediates tend to go through an extensive reduction achieving mostly C‐containing productions due to the lack of N‐intermediates, originating from slow diffusion rate of NO2‐. Herein, we report the charge‐polarized Feδ‐‐Cuδ+ dual sites in metal/carbon heterojunction material (Cu@Fe‐N‐C) for co‐reduction of CO2 and dilute NO2‐ solution (100 ppm NO2‐‐N). The electron‐rich single Fe atoms dispersed N‐doped carbon (Fe‐N‐C) restrain *CO desorption, and the electron‐deficient Cu nanoparticles (Cu) promote the deep reduction of NO2– to *NH2. As a result, the obtained Cu@Fe‐N‐C exhibits a high Faradic efficiency for urea of 50.05% with a yield of 850.57 mg h‐1 g‐1 at ‐0.35 V (vs. RHE) in a flow cell. Moreover, Curea‐selectivity reaches to 100% and a near‐unity selectivity for the value‐added urea and NH3 is realized. The present results provide a valuable reference for the design of new catalysts for efficient synthesis of C‐N compounds in dilute NO2‐ solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电荷极化通过在稀释浓度下共同还原二氧化碳和亚硝酸盐来促进电化学尿素合成,同时具有统一的碳选择性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Tandem Assembly and Etching Chemistry towards Mesoporous Conductive Metal-Organic Frameworks for Sodium Storage over 50,000 Cycles A Multifunctional Molecular Modulated Strategy Featuring Novel Li+ Transport Centers and Li2O-Rich SEI Layer for High-Performance All-Solid-State Lithium Metal Batteries Water in Electrocatalysis Dynamic Liquid Crystal Elastomers for Body Heat- and Sunlight-Driven Self-Sustaining Motion via Material-Structure Synergy Overcoming Boundaries: Towards the Ambient Aqueous Synthesis of Covalent Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1