Charge Polarization Boosting Electrochemical Urea Synthesis by Co‐Reduction of CO2 and Nitrite in Dilute Concentrations with a Unity Carbon Selectivity
{"title":"Charge Polarization Boosting Electrochemical Urea Synthesis by Co‐Reduction of CO2 and Nitrite in Dilute Concentrations with a Unity Carbon Selectivity","authors":"Zhihao Feng, Lu-Hua Zhang, Yabo Guo, Jiangyi Guo, Fei Li, Fengshou Yu","doi":"10.1002/anie.202500262","DOIUrl":null,"url":null,"abstract":"Synthesis of urea through electrocatalytic coupling reaction of CO2 with nitrite (NO2‐) represents a sustainable means to substitute the conventional energy‐intensive urea synthetic protocol. The direct conversion of dilute NO2‐ in real wastewaters to urea with high efficiency is still a significant challenge, as C‐intermediates tend to go through an extensive reduction achieving mostly C‐containing productions due to the lack of N‐intermediates, originating from slow diffusion rate of NO2‐. Herein, we report the charge‐polarized Feδ‐‐Cuδ+ dual sites in metal/carbon heterojunction material (Cu@Fe‐N‐C) for co‐reduction of CO2 and dilute NO2‐ solution (100 ppm NO2‐‐N). The electron‐rich single Fe atoms dispersed N‐doped carbon (Fe‐N‐C) restrain *CO desorption, and the electron‐deficient Cu nanoparticles (Cu) promote the deep reduction of NO2– to *NH2. As a result, the obtained Cu@Fe‐N‐C exhibits a high Faradic efficiency for urea of 50.05% with a yield of 850.57 mg h‐1 g‐1 at ‐0.35 V (vs. RHE) in a flow cell. Moreover, Curea‐selectivity reaches to 100% and a near‐unity selectivity for the value‐added urea and NH3 is realized. The present results provide a valuable reference for the design of new catalysts for efficient synthesis of C‐N compounds in dilute NO2‐ solution.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"18 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis of urea through electrocatalytic coupling reaction of CO2 with nitrite (NO2‐) represents a sustainable means to substitute the conventional energy‐intensive urea synthetic protocol. The direct conversion of dilute NO2‐ in real wastewaters to urea with high efficiency is still a significant challenge, as C‐intermediates tend to go through an extensive reduction achieving mostly C‐containing productions due to the lack of N‐intermediates, originating from slow diffusion rate of NO2‐. Herein, we report the charge‐polarized Feδ‐‐Cuδ+ dual sites in metal/carbon heterojunction material (Cu@Fe‐N‐C) for co‐reduction of CO2 and dilute NO2‐ solution (100 ppm NO2‐‐N). The electron‐rich single Fe atoms dispersed N‐doped carbon (Fe‐N‐C) restrain *CO desorption, and the electron‐deficient Cu nanoparticles (Cu) promote the deep reduction of NO2– to *NH2. As a result, the obtained Cu@Fe‐N‐C exhibits a high Faradic efficiency for urea of 50.05% with a yield of 850.57 mg h‐1 g‐1 at ‐0.35 V (vs. RHE) in a flow cell. Moreover, Curea‐selectivity reaches to 100% and a near‐unity selectivity for the value‐added urea and NH3 is realized. The present results provide a valuable reference for the design of new catalysts for efficient synthesis of C‐N compounds in dilute NO2‐ solution.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.