The Internal Structural Dynamics of Elastin-Like Polypeptide Assemblies by 13C-Direct Detected NMR Spectroscopy

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-02-16 DOI:10.1021/acs.analchem.4c05163
Dörte Brandis, Pavel Kadeřávek, Dennis Kurzbach
{"title":"The Internal Structural Dynamics of Elastin-Like Polypeptide Assemblies by 13C-Direct Detected NMR Spectroscopy","authors":"Dörte Brandis, Pavel Kadeřávek, Dennis Kurzbach","doi":"10.1021/acs.analchem.4c05163","DOIUrl":null,"url":null,"abstract":"Elastin-like polypeptides (ELPs) are biocompatible polymers exhibiting lower critical solution temperature (LCST) behavior, making them valuable in various applications, including drug delivery and tissue engineering. This study addresses the atomistic-level understanding of ELP self-assembly, focusing on their internal structural dynamics. Conventional proton-detected nuclear magnetic resonance (NMR) spectroscopy faces limitations in studying ELP aggregates due to accelerated proton exchange processes, which cause significant resonance broadening. Herein, we show how to overcome this hurdle by using carbon-13-detected NMR. This method mitigates issues related to amide proton exchange, allowing for a residue-resolved view of the internal configuration of ELP aggregates. With this method, we record residue-resolved <sup>15</sup>N relaxation rates, revealing three features. (i) Proline residues within the PGXGV pentapeptide repeats (X being any amino acid except proline) of ELP become motional restricted upon aggregation, indicating their role as interchain contacts. (ii) Pentapeptides with alanine guest residue X display particularly significantly reduced motional freedom upon aggregation. (iii) Even within large ELP aggregates, fast internal dynamics characterize the peptide chains in a way that is reminiscent of condensed liquid phases. The presented study is the first proof of concept that <sup>13</sup>C-direct detection is a viable tool to delineate the internal structural dynamics of condensed ELP phases by NMR. It might, thus, help to foster new investigations of their aggregation mechanisms.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"80 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Elastin-like polypeptides (ELPs) are biocompatible polymers exhibiting lower critical solution temperature (LCST) behavior, making them valuable in various applications, including drug delivery and tissue engineering. This study addresses the atomistic-level understanding of ELP self-assembly, focusing on their internal structural dynamics. Conventional proton-detected nuclear magnetic resonance (NMR) spectroscopy faces limitations in studying ELP aggregates due to accelerated proton exchange processes, which cause significant resonance broadening. Herein, we show how to overcome this hurdle by using carbon-13-detected NMR. This method mitigates issues related to amide proton exchange, allowing for a residue-resolved view of the internal configuration of ELP aggregates. With this method, we record residue-resolved 15N relaxation rates, revealing three features. (i) Proline residues within the PGXGV pentapeptide repeats (X being any amino acid except proline) of ELP become motional restricted upon aggregation, indicating their role as interchain contacts. (ii) Pentapeptides with alanine guest residue X display particularly significantly reduced motional freedom upon aggregation. (iii) Even within large ELP aggregates, fast internal dynamics characterize the peptide chains in a way that is reminiscent of condensed liquid phases. The presented study is the first proof of concept that 13C-direct detection is a viable tool to delineate the internal structural dynamics of condensed ELP phases by NMR. It might, thus, help to foster new investigations of their aggregation mechanisms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Neural Network–Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells Quantitative Characterization of Organosilane Monolayers by Oxidative Dissociation of Monolayer Molecules Self-Localized Plasmonic Nanocavity Strategy for the Glycosylation Detection of Glioblastoma Extracellular Vesicles Feature Wavelengths for Quantifying Methane Concentrations Using Shortwave Infrared Hyperspectral Imaging: A Controlled Condition Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1