Enhanced Production and Techno-Economic Analysis of Sustainable Biofuel Production via Continuous Hydrogenation of Furfural Using the Cu–ZnO–Al2O3 Catalyst

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-02-17 DOI:10.1021/acssuschemeng.4c08820
Biswajit Saha, Arundhathi Racha, Puneet Kumar Chaudhary, Brijesh Kumar Singh, Chanchal Samanta, Bharat L Newalkar
{"title":"Enhanced Production and Techno-Economic Analysis of Sustainable Biofuel Production via Continuous Hydrogenation of Furfural Using the Cu–ZnO–Al2O3 Catalyst","authors":"Biswajit Saha, Arundhathi Racha, Puneet Kumar Chaudhary, Brijesh Kumar Singh, Chanchal Samanta, Bharat L Newalkar","doi":"10.1021/acssuschemeng.4c08820","DOIUrl":null,"url":null,"abstract":"2-Methylfuran is a perfect green solution on the pathway of finding alternative fuels. We report here for the first time the continuous production of 2-methylfuran (2-MF), a sustainable biofuel from biomass-derived furfural (FFA), over an industrial Cu–ZnO–Al<sub>2</sub>O<sub>3</sub> (CZA) catalyst. The modified coprecipitation method provides a uniformly dispersed crystalline structure to the synthesized catalysts, along with intended copper (Cu) loading achievement. Different Cu loadings affect the catalytic behavior and activity. Hence, CZA catalysts with two Cu loadings of 9.8 and 4.7% were studied in detail, denoted as C1 and C2, respectively. The catalysts were characterized via XRD, N<sub>2</sub> adsorption, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD, XPS, ICP-MS, and TEM. Remarkably, the prepared catalysts demonstrate balanced acid sites with mesopores, a high surface area and pore volume, and better controlled nanoparticle size promoting catalytic activity. TEM and H<sub>2</sub>-TPR studies reveal a better Cu dispersion. Existence of Cu<sup>2+</sup> and Cu <sup>+</sup> even after reduction by XPS study proves the efficiency of the synthesized catalysts. Furthermore, TGA indicates the stability of CZA catalysts. To understand catalytic activity and selectivity, the investigation was carried out in a packed-bed fixed-bed stainless steel reactor. Better physiochemical properties result in high FFA conversion of 33.8% and selectivity of 99.6% for 2-MF. No side products were formed during reaction otherwise improbable via the continuous method. Compared with available literature, the CZA catalyst was found to exhibit superior catalytic performance. The reaction kinetics of furfural hydrogenation to 2-methylfuran was investigated, and it was found that the reaction order is high, and the activation energy was 61.2 kJ/mol. The rate constant <i>k</i> clearly obeyed the Arrhenius law from 180 to 220 °C. In addition, evaluation of reaction kinetics also indicated the absence of ring hydrogenation and decarbonylation products, which is difficult to achieve. Finally, the process shows significant economic viability, which resulted in the minimum levelized production cost for 2-methylfuran of 173,068.16 $/ton with 78.32% overall energy efficiency.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"49 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08820","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2-Methylfuran is a perfect green solution on the pathway of finding alternative fuels. We report here for the first time the continuous production of 2-methylfuran (2-MF), a sustainable biofuel from biomass-derived furfural (FFA), over an industrial Cu–ZnO–Al2O3 (CZA) catalyst. The modified coprecipitation method provides a uniformly dispersed crystalline structure to the synthesized catalysts, along with intended copper (Cu) loading achievement. Different Cu loadings affect the catalytic behavior and activity. Hence, CZA catalysts with two Cu loadings of 9.8 and 4.7% were studied in detail, denoted as C1 and C2, respectively. The catalysts were characterized via XRD, N2 adsorption, H2-TPR, NH3-TPD, XPS, ICP-MS, and TEM. Remarkably, the prepared catalysts demonstrate balanced acid sites with mesopores, a high surface area and pore volume, and better controlled nanoparticle size promoting catalytic activity. TEM and H2-TPR studies reveal a better Cu dispersion. Existence of Cu2+ and Cu + even after reduction by XPS study proves the efficiency of the synthesized catalysts. Furthermore, TGA indicates the stability of CZA catalysts. To understand catalytic activity and selectivity, the investigation was carried out in a packed-bed fixed-bed stainless steel reactor. Better physiochemical properties result in high FFA conversion of 33.8% and selectivity of 99.6% for 2-MF. No side products were formed during reaction otherwise improbable via the continuous method. Compared with available literature, the CZA catalyst was found to exhibit superior catalytic performance. The reaction kinetics of furfural hydrogenation to 2-methylfuran was investigated, and it was found that the reaction order is high, and the activation energy was 61.2 kJ/mol. The rate constant k clearly obeyed the Arrhenius law from 180 to 220 °C. In addition, evaluation of reaction kinetics also indicated the absence of ring hydrogenation and decarbonylation products, which is difficult to achieve. Finally, the process shows significant economic viability, which resulted in the minimum levelized production cost for 2-methylfuran of 173,068.16 $/ton with 78.32% overall energy efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Investigation on the Impact of Coexisting Component for the Catalytic Hydrogenolysis of Cellulose in Bagasse to 2,5-Hexanedione Enhanced Oxygen Reduction Reaction Kinetics of Li-Containing Oxide as a High-Performance Cathode for Solid Oxide Fuel Cells Through Synergistic Li Volatilization and Anion Doping Exploring the Enhancement on CO2 Mineralization of Solid Wastes via Amine-Looping Preparation of Hydrogen Storage Liquid Fuel by Biomass-Based Syngas from Corn Straw over a C60 Modified Hydrophobic Catalyst Optimization and Analysis of Holistic Wastewater Reusing and Treatment Strategies in Shale Gas Hydraulic Fracturing: A Case Study in Sichuan, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1