Dual Co Single Atom Doping and CO In Situ Regulation Cooperatively Stimulate the Basal Plane of Co–MoS2 with Boosted Hydrodesulfurization Activity

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-02-16 DOI:10.1021/acssuschemeng.4c08673
Lei Liu, Ning Liu, Chengna Dai, Ruinian Xu, Gangqiang Yu, Ning Wang, Biaohua Chen
{"title":"Dual Co Single Atom Doping and CO In Situ Regulation Cooperatively Stimulate the Basal Plane of Co–MoS2 with Boosted Hydrodesulfurization Activity","authors":"Lei Liu, Ning Liu, Chengna Dai, Ruinian Xu, Gangqiang Yu, Ning Wang, Biaohua Chen","doi":"10.1021/acssuschemeng.4c08673","DOIUrl":null,"url":null,"abstract":"Realizing MoS<sub>2</sub> basal plane activation is highly desirable and challenging in the field of hydrodesulfurization (HDS). Herein, we have developed a new strategy of dual Co single atom doping (SAD) combined with CO in situ regulation, which can successfully activate the basal plane of Co<sub>3.6%</sub>–MoS<sub>2</sub>-0.3 generating high ratios of thermostable 1T-plane (∼70%) and large S vacancies. For the first time, a synergistic effect has been unraveled where the lattice substituted neighboring dual SA Co can efficiently activate in-plane S through extensively reducing its band gap (2.21 → 0.14 eV), which tremendously favors S subtraction and 2H → 1T phase transition assisted by CO. Boosted thiophene HDS activity can be eventually achieved with the reaction rate constant (<i>k</i>) being 8.3 times higher than that of commercial <sup>c</sup>Co<sub>3.6%</sub>–MoS<sub>2</sub> (0.04 → 0.33 h<sup>–1</sup>). Generally, the present work paves a new way for next-generation HDS catalyst design with activated basal plane.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"35 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08673","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Realizing MoS2 basal plane activation is highly desirable and challenging in the field of hydrodesulfurization (HDS). Herein, we have developed a new strategy of dual Co single atom doping (SAD) combined with CO in situ regulation, which can successfully activate the basal plane of Co3.6%–MoS2-0.3 generating high ratios of thermostable 1T-plane (∼70%) and large S vacancies. For the first time, a synergistic effect has been unraveled where the lattice substituted neighboring dual SA Co can efficiently activate in-plane S through extensively reducing its band gap (2.21 → 0.14 eV), which tremendously favors S subtraction and 2H → 1T phase transition assisted by CO. Boosted thiophene HDS activity can be eventually achieved with the reaction rate constant (k) being 8.3 times higher than that of commercial cCo3.6%–MoS2 (0.04 → 0.33 h–1). Generally, the present work paves a new way for next-generation HDS catalyst design with activated basal plane.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双Co单原子掺杂和Co原位调控协同刺激Co - mos2基面,提高其加氢脱硫活性
在加氢脱硫(HDS)领域,实现二硫化钼基面活化是一个迫切需要且具有挑战性的问题。在此,我们开发了双Co单原子掺杂(SAD)与Co原位调控相结合的新策略,该策略可以成功激活Co3.6%-MoS2-0.3的基面,产生高热稳定性1t面(~ 70%)和大S空位。本文首次揭示了一种协同效应,即晶格取代的相邻双SA Co可以通过大幅减小S的带隙(2.21→0.14 eV)而有效激活面内S,这极大地促进了Co的S减相和2H→1T相变。最终可以提高噻吩的HDS活性,其反应速率常数(k)比商业cco3.6 - mos2(0.04→0.33 h-1)高8.3倍。总的来说,本研究为下一代活化基面HDS催化剂的设计开辟了一条新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
2H-MoS2
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Activating Lattice Oxygen Mechanism in IrOx@WO3 Composite Electrocatalyst for Enhanced Oxygen Evolution Performance Ultrarapid Electrosynthesis of HOF-102 Enables Multiscale Removal of Uremic Toxins Efficient Catalytic Production of 1,3,2-Dioxathiolane 2,2-Dioxide (DTD) Using In Situ-Generated H2O2 A Sustainable Hybrid Machining Method for Superalloy: Diamond Wire Electrochemical Grinding with Environmentally Benign Electrolyte (D-WECG) Synergistic Coupling of MoS2 with Electron-Rich MXene for CO2 Conversion to Ethanol under Visible Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1