{"title":"Selective Gold Recycling from Electronic Waste Using a Highly Stable Porous Aromatic Framework/Polymer and Its Application for CO2 Electroreduction","authors":"Tianwei Xue, Guangkuo Xu, Chengbin Liu, Ruiqing Li, Yanyin Wu, Yuyu Guo, Shan Gong, Zeyu Shao, Xiangcheng Cai, Haoyu Zou, Linxiao Cui, Jia Zhao, Zhihong Gao, Shuliang Yang, Jun Li, Buxing Han, Li Peng","doi":"10.1002/anie.202500092","DOIUrl":null,"url":null,"abstract":"Recycling gold from electronic waste represents a sustainable and environmentally friendly strategy for both resource recovery and waste reduction. In this study, we designed an innovative and highly stable porous aromatic framework (PAF)/polymer composite, PAF-147/polydopamine (PDA), as an efficient adsorbent for selective gold recovery for the first time. The maximum gold adsorption capacity of PAF-147/PDA reached 1700 mg·g⁻¹. Furthermore, it could rapidly extract over 95% of gold from solutions in a pH range of 0-10 within just 2 minutes. Importantly, as a real application demonstration, the PAF-147/PDA composite selectively recovered 99% of gold from the leachate of discarded central processing units. When the recovered Au-containing composite was applied to electrocatalytic CO2 reduction, the Faradaic efficiency for CO production exceeded 95% across acidic, neutral, and alkaline electrolytes, outperforming most reported gold-based catalysts due to the cooperation effect of the composite and Au. This work opens a new way for the combination of selective gold recovery from electronic waste with highly efficient CO2 conversion.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"10 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recycling gold from electronic waste represents a sustainable and environmentally friendly strategy for both resource recovery and waste reduction. In this study, we designed an innovative and highly stable porous aromatic framework (PAF)/polymer composite, PAF-147/polydopamine (PDA), as an efficient adsorbent for selective gold recovery for the first time. The maximum gold adsorption capacity of PAF-147/PDA reached 1700 mg·g⁻¹. Furthermore, it could rapidly extract over 95% of gold from solutions in a pH range of 0-10 within just 2 minutes. Importantly, as a real application demonstration, the PAF-147/PDA composite selectively recovered 99% of gold from the leachate of discarded central processing units. When the recovered Au-containing composite was applied to electrocatalytic CO2 reduction, the Faradaic efficiency for CO production exceeded 95% across acidic, neutral, and alkaline electrolytes, outperforming most reported gold-based catalysts due to the cooperation effect of the composite and Au. This work opens a new way for the combination of selective gold recovery from electronic waste with highly efficient CO2 conversion.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.