Pu Guo, Junyao Zhang, Zhekun Hua, Tongrui Sun, Li Li, Shilei Dai, Lize Xiong, Jia Huang
{"title":"Organic Synaptic Transistors Based on a Semiconductor Heterojunction for Artificial Visual and Neuromorphic Functions","authors":"Pu Guo, Junyao Zhang, Zhekun Hua, Tongrui Sun, Li Li, Shilei Dai, Lize Xiong, Jia Huang","doi":"10.1021/acs.nanolett.4c05809","DOIUrl":null,"url":null,"abstract":"Visual acuity is the ability of the biological retina to distinguish images. High-sensitivity image acquisition improves the quality of visual perception, making images more recognizable for the visual system. Therefore, developing synaptic phototransistors with enhanced photosensitivity is crucial for high-performance artificial vision. Here, organic synaptic phototransistors (OSPs) based on p–n type semiconductor heterojunctions are presented, which demonstrate improved photoresponses and light storage characteristics. As many as 800 potentiation–depression states can be obtained, and the nonlinearity extracted from the long-term potentiation curve is only 0.08. Furthermore, by utilizing light-adjustable synapse-like behaviors, the phototransistors realize a noise reduction function and logic gate transformation. Benefiting from the enhanced photosensitivity of the OSPs, an artificial neural network constructed based on the OSPs shows the recognition accuracy of ∼93% for both handwritten numbers and electrocardiography signals. This research provides an effective path for developing OSPs with enhanced photoelectric performance to advance artificial visual systems.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"34 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05809","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Visual acuity is the ability of the biological retina to distinguish images. High-sensitivity image acquisition improves the quality of visual perception, making images more recognizable for the visual system. Therefore, developing synaptic phototransistors with enhanced photosensitivity is crucial for high-performance artificial vision. Here, organic synaptic phototransistors (OSPs) based on p–n type semiconductor heterojunctions are presented, which demonstrate improved photoresponses and light storage characteristics. As many as 800 potentiation–depression states can be obtained, and the nonlinearity extracted from the long-term potentiation curve is only 0.08. Furthermore, by utilizing light-adjustable synapse-like behaviors, the phototransistors realize a noise reduction function and logic gate transformation. Benefiting from the enhanced photosensitivity of the OSPs, an artificial neural network constructed based on the OSPs shows the recognition accuracy of ∼93% for both handwritten numbers and electrocardiography signals. This research provides an effective path for developing OSPs with enhanced photoelectric performance to advance artificial visual systems.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.