Synthesis of Ethylene–Styrene Multiblock Copolymers Possessing High Strength and Toughness Using Binuclear Scandium Catalysts

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2025-02-17 DOI:10.1021/acs.macromol.5c00169
Qiyuan Wang, Zhen Zhang, Yang Jiang, Shihui Li, Dongmei Cui
{"title":"Synthesis of Ethylene–Styrene Multiblock Copolymers Possessing High Strength and Toughness Using Binuclear Scandium Catalysts","authors":"Qiyuan Wang, Zhen Zhang, Yang Jiang, Shihui Li, Dongmei Cui","doi":"10.1021/acs.macromol.5c00169","DOIUrl":null,"url":null,"abstract":"Synthesizing materials with both high strength and toughness has been a promising but challenging research project. Syndiotactic polystyrene (<i>s</i>PS) is known for its high strength while encountering serious brittleness and processing problems. Introducing flexible ethylene units into rigid polystyrene chains can solve these issues, but copolymer regularity and sequence distribution need to be controlled to balance strength and toughness. Herein, we report the copolymerization of styrene and ethylene using alkyl-bridged fluorenyl binuclear scandium catalysts. The resulting copolymers show superior tensile strength (60.0 MPa) and impact resistance (119.6 kJ m<sup>–2</sup>), surpassing <i>s</i>PS and high-density polyethylene (HDPE), respectively. These properties are mainly attributed to their unique chain structures composed of long syndiotactic polystyrene and long polyethylene multiblocks, forming an interpenetrating network without phase separation. The PE sequence lengths were measured by successive self-annealing procedures. The density functional theory simulation revealed the mechanisms. The binuclear active species of homo <i>s</i>PS-attached Sc<sup>3+</sup> species (<b>Cat</b><sub><b>Sc2-nSt</b></sub>) prefer styrene insertion due to low insertion energy and thermostable intermediate. Homo PE-attached Sc<sup>3+</sup> ions (<b>Cat</b><sub><b>Sc2-nE</b></sub>) favor ethylene insertion, where the agoistic interaction of H---Sc<sup>3+</sup> prevents styrene insertion. The hetero <i>s</i>PS and PE-attached Sc<sup>3+</sup> ions (<b>Cat</b><sub><b>Sc2-nESt</b></sub>) provide the opportunity to form <i>s</i>PS–PE joints in the copolymer chain.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"6 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesizing materials with both high strength and toughness has been a promising but challenging research project. Syndiotactic polystyrene (sPS) is known for its high strength while encountering serious brittleness and processing problems. Introducing flexible ethylene units into rigid polystyrene chains can solve these issues, but copolymer regularity and sequence distribution need to be controlled to balance strength and toughness. Herein, we report the copolymerization of styrene and ethylene using alkyl-bridged fluorenyl binuclear scandium catalysts. The resulting copolymers show superior tensile strength (60.0 MPa) and impact resistance (119.6 kJ m–2), surpassing sPS and high-density polyethylene (HDPE), respectively. These properties are mainly attributed to their unique chain structures composed of long syndiotactic polystyrene and long polyethylene multiblocks, forming an interpenetrating network without phase separation. The PE sequence lengths were measured by successive self-annealing procedures. The density functional theory simulation revealed the mechanisms. The binuclear active species of homo sPS-attached Sc3+ species (CatSc2-nSt) prefer styrene insertion due to low insertion energy and thermostable intermediate. Homo PE-attached Sc3+ ions (CatSc2-nE) favor ethylene insertion, where the agoistic interaction of H---Sc3+ prevents styrene insertion. The hetero sPS and PE-attached Sc3+ ions (CatSc2-nESt) provide the opportunity to form sPS–PE joints in the copolymer chain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Rheology and Microstructural Behavior of Semidilute Suspensions of Semiflexible Rods across Five Decades of Shear Rate Harnessing Non-Thermal External Stimuli for Polymer Recycling Metal-Free Curing of 3D Printable Silicone Elastomers via Thermally Triggered 2-Oxazoline Cross-Linkers Ten Problems in Polymer Reactivity Prediction Polydithiocarbamates with Discontinuous Mws Synthesized via Multicomponent Tandem Polymerizations of CS2, Secondary Diamines, and Dibromide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1