Impact of Nitrogen Polymerization on the Properties of MgN2 Polymorphs: Ultrasoft Semiconductor versus Hard Wide-Bandgap Semiconductor

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-02-17 DOI:10.1021/acs.jpcc.4c07653
Junzhao Li, Huafeng Dong, Le Huang, Hui Long, Minru Wen
{"title":"Impact of Nitrogen Polymerization on the Properties of MgN2 Polymorphs: Ultrasoft Semiconductor versus Hard Wide-Bandgap Semiconductor","authors":"Junzhao Li, Huafeng Dong, Le Huang, Hui Long, Minru Wen","doi":"10.1021/acs.jpcc.4c07653","DOIUrl":null,"url":null,"abstract":"Utilizing evolutionary algorithms and density functional theory calculations, we predict two novel semiconducting phases of MgN<sub>2</sub> (<i>C</i>2/<i>m</i>-MgN<sub>2</sub> and <i>R</i>3̅-MgN<sub>2</sub>) that are dynamically stable at ambient pressure and thermally stable at 300 and 600 K. Interestingly, the different polymerization forms of nitrogen in the <i>C</i>2/<i>m</i> and <i>R</i>3̅ phases lead to significantly different mechanical properties. Specifically, <i>C</i>2/<i>m</i>-MgN<sub>2</sub> is an exceptionally rare ultrasoft semiconductor (<i>H</i><sub><i>v</i></sub> = 0.11 GPa, lower than aluminum and silver) with high anisotropy (<i>A</i><sup><i>U</i></sup> = 24.85), while <i>R</i>3̅-MgN<sub>2</sub> is a hard semiconductor (<i>H</i><sub><i>v</i></sub> = 17.72 GPa) with a low melting point (<i>T</i><sub><i>m</i></sub> = 1057 ± 13 K, nearly half that of <i>P</i>6<sub>3</sub><i>mc</i>-AlN and <i>P</i>31<i>c</i>-Si<sub>3</sub>N<sub>4</sub>). Further analysis of explosive performance revealed that <i>R</i>3̅-MgN<sub>2</sub> has a higher energy density than <i>Cmmm</i>-MgN<sub>4</sub>, despite the latter having a higher nitrogen content, due to the unique wrinkled six-membered N<sub>6</sub> rings in <i>R</i>3̅-MgN<sub>2</sub>. These findings provide valuable insights into the impact of nitrogen polymerization on the mechanical and explosive performances of nitrogen-rich metal nitrides and offer guidance for designing nitrides with tailored properties.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"26 7 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07653","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing evolutionary algorithms and density functional theory calculations, we predict two novel semiconducting phases of MgN2 (C2/m-MgN2 and R3̅-MgN2) that are dynamically stable at ambient pressure and thermally stable at 300 and 600 K. Interestingly, the different polymerization forms of nitrogen in the C2/m and R3̅ phases lead to significantly different mechanical properties. Specifically, C2/m-MgN2 is an exceptionally rare ultrasoft semiconductor (Hv = 0.11 GPa, lower than aluminum and silver) with high anisotropy (AU = 24.85), while R3̅-MgN2 is a hard semiconductor (Hv = 17.72 GPa) with a low melting point (Tm = 1057 ± 13 K, nearly half that of P63mc-AlN and P31c-Si3N4). Further analysis of explosive performance revealed that R3̅-MgN2 has a higher energy density than Cmmm-MgN4, despite the latter having a higher nitrogen content, due to the unique wrinkled six-membered N6 rings in R3̅-MgN2. These findings provide valuable insights into the impact of nitrogen polymerization on the mechanical and explosive performances of nitrogen-rich metal nitrides and offer guidance for designing nitrides with tailored properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Thermally Activated Delayed Fluorescence (TADF) Active Systems: Mechanism, Applications, and Future Directions Effect of the Electrolyte Solution on the Electrochemical Behaviors of Graphene-like Graphite as the Cathode of Dual-Ion Batteries First-Principles Investigate the Oxygen Vacancies Affected Reversible Metal-to-Insulator Transition in Nonstoichiometric NbO2–x
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1