{"title":"Hunting for the prospective Tcc family based on the diquark-antidiquark configuration","authors":"Wen-Chao Dong , Zhi-Gang Wang","doi":"10.1016/j.nuclphysb.2025.116828","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the first <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>c</mi></mrow></msub></math></span> observation at the LHCb Collaboration, the spectroscopic properties of the entire isoscalar and isovector <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>c</mi></mrow></msub></math></span> family are systematically investigated by means of multiple sorts of relativized and nonrelativistic diquark formalisms, which include the Godfrey-Isgur relativized diquark model, the modified Godfrey-Isgur relativized diquark model incorporating the color screening effects, the nonrelativistic diquark model with the Gaussian type hyperfine potential, and the nonrelativistic diquark model with the Yukawa type hyperfine potential. In terms of the 1<em>S</em>-wave double-charm tetraquark state with <span><math><mi>I</mi><mo>(</mo><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn><mo>(</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span>, the predicted masses of most diquark-antidiquark scenarios are somewhat higher than the observed value of the <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>c</mi></mrow></msub><msup><mrow><mo>(</mo><mn>3875</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> structure. In light of the diquark-antidiquark configuration, this work unveils the mixing angles of the orbitally excited isovector <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>c</mi></mrow></msub></math></span> states and the magic mixing angles of the ideal heavy-light tetraquarks for the first time. As the advancement of the experimental detection capability, these phenomenological predictions will effectively boost the hunting for the prospective low-lying <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>c</mi></mrow></msub></math></span> states in the future.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1012 ","pages":"Article 116828"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000380","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the first observation at the LHCb Collaboration, the spectroscopic properties of the entire isoscalar and isovector family are systematically investigated by means of multiple sorts of relativized and nonrelativistic diquark formalisms, which include the Godfrey-Isgur relativized diquark model, the modified Godfrey-Isgur relativized diquark model incorporating the color screening effects, the nonrelativistic diquark model with the Gaussian type hyperfine potential, and the nonrelativistic diquark model with the Yukawa type hyperfine potential. In terms of the 1S-wave double-charm tetraquark state with , the predicted masses of most diquark-antidiquark scenarios are somewhat higher than the observed value of the structure. In light of the diquark-antidiquark configuration, this work unveils the mixing angles of the orbitally excited isovector states and the magic mixing angles of the ideal heavy-light tetraquarks for the first time. As the advancement of the experimental detection capability, these phenomenological predictions will effectively boost the hunting for the prospective low-lying states in the future.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.