A Q-learning-driven genetic algorithm for the distributed hybrid flow shop group scheduling problem with delivery time windows

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2025-02-13 DOI:10.1016/j.ins.2025.121971
Qianhui Ji , Yuyan Han , Yuting Wang , Dunwei Gong , Kaizhou Gao
{"title":"A Q-learning-driven genetic algorithm for the distributed hybrid flow shop group scheduling problem with delivery time windows","authors":"Qianhui Ji ,&nbsp;Yuyan Han ,&nbsp;Yuting Wang ,&nbsp;Dunwei Gong ,&nbsp;Kaizhou Gao","doi":"10.1016/j.ins.2025.121971","DOIUrl":null,"url":null,"abstract":"<div><div>The distributed cell manufacturing can leverage resources from different geographic locations to achieve more efficient production and services. In its production lines, jobs requiring setup conditions are grouped together. To improve the flexibility of the production process, each process consists of multiple processing stages with each stage containing one or more parallel machines, and at least one stage has two or more than two machines. This shop floor layout can balance the workload of the individual machines and expand production capacity. In addition, on-time delivery is a significant criterion for assessing the impact on the competitiveness and long-term development of an organization. In this context, we study the distributed hybrid flow shop group scheduling problem (DHFGSP) with the total weighted earliness and tardiness criterion. For the first time, we establish a mixed integer linear programming model of DHFGSP, and validate its accuracy through the Gurobi solver. Meanwhile, we design a Q-learning-driven genetic algorithm (QGA) to solve the above problem. Within QGA, we first propose an idle-time insertion method for the last stage to further minimize the operation objective. Then, we devise multiple neighborhood structures tailored to penalty groups and worst factories, integrating them into three variable neighborhood searches as mutation methods. Next, a Q-learning table is designed by incorporating two states and eight actions, each action representing a unique combination of crossover and mutation techniques. The modified design can make the population into an intelligent agent, autonomously selecting evolutionary actions. Through experimental results and analysis on 405 test instances, we validate the effectiveness of all proposed strategies and confirm that QGA outperforms other existing advanced algorithms in solving the DHFGSP.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"705 ","pages":"Article 121971"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525001033","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The distributed cell manufacturing can leverage resources from different geographic locations to achieve more efficient production and services. In its production lines, jobs requiring setup conditions are grouped together. To improve the flexibility of the production process, each process consists of multiple processing stages with each stage containing one or more parallel machines, and at least one stage has two or more than two machines. This shop floor layout can balance the workload of the individual machines and expand production capacity. In addition, on-time delivery is a significant criterion for assessing the impact on the competitiveness and long-term development of an organization. In this context, we study the distributed hybrid flow shop group scheduling problem (DHFGSP) with the total weighted earliness and tardiness criterion. For the first time, we establish a mixed integer linear programming model of DHFGSP, and validate its accuracy through the Gurobi solver. Meanwhile, we design a Q-learning-driven genetic algorithm (QGA) to solve the above problem. Within QGA, we first propose an idle-time insertion method for the last stage to further minimize the operation objective. Then, we devise multiple neighborhood structures tailored to penalty groups and worst factories, integrating them into three variable neighborhood searches as mutation methods. Next, a Q-learning table is designed by incorporating two states and eight actions, each action representing a unique combination of crossover and mutation techniques. The modified design can make the population into an intelligent agent, autonomously selecting evolutionary actions. Through experimental results and analysis on 405 test instances, we validate the effectiveness of all proposed strategies and confirm that QGA outperforms other existing advanced algorithms in solving the DHFGSP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有交货时间窗口的分布式混合流程车间组调度问题的 Q-learning 驱动遗传算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Hierarchical three-way decision fusion for multigranularity GPU-CPU coscheduling in hybrid computing systems Explainable service recommendation for interactive mashup development counteracting biases Three-way decision-based reinforcement learning for container vertical scaling One-class graph autoencoder: A new end-to-end, low-dimensional, and interpretable approach for node classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1