A.R. Cerrone , L.G. Westerink , G. Ling , C.P. Blakely , D. Wirasaet , C. Dawson , J.J. Westerink
{"title":"Correcting physics-based global tide and storm water level forecasts with the temporal fusion transformer","authors":"A.R. Cerrone , L.G. Westerink , G. Ling , C.P. Blakely , D. Wirasaet , C. Dawson , J.J. Westerink","doi":"10.1016/j.ocemod.2025.102509","DOIUrl":null,"url":null,"abstract":"<div><div>Global and coastal ocean surface water elevation prediction skill has advanced considerably with improved algorithms, more refined discretizations, and high-performance parallel computing. Model skill is tied to mesh resolution, the accuracy of specified bathymetry/topography, dissipation parameterizations, air-sea drag formulations, and the fidelity of forcing functions. Wind forcing skill can be particularly prone to errors, especially at the land-ocean interface. The resulting biases and errors can be addressed holistically with a machine-learning (ML) approach. Herein, we weakly couple the Temporal Fusion Transformer to the National Oceanic and Atmospheric Administration’s (NOAA) Storm and Tide Operational Forecast System (STOFS-2D-Global) to improve its forecasting skill throughout a 7-day horizon. We demonstrate the transformer’s ability to enrich the hydrodynamic model’s output at 228 observed water level stations operated by NOAA’s National Ocean Service. We conclude that the transformer is a rapid way to correct STOFS-2D-Global forecasted water levels provided that sufficient covariates are supplied. For stations in wind-dominant areas, we demonstrate that including past and future wind-speed covariates makes for a more skillful forecast. In general, while the transformer renders consistent corrections at both tidally and wind-dominant stations, it does so most aggressively at tidally-dominant stations. We show notable improvements in Alaska and the Atlantic and Pacific seaboards of the United States. We evaluate several transformers instantiated with different hyperparameters, covariates, and training data to provide guidance on how to enhance performance.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"195 ","pages":"Article 102509"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000125","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Global and coastal ocean surface water elevation prediction skill has advanced considerably with improved algorithms, more refined discretizations, and high-performance parallel computing. Model skill is tied to mesh resolution, the accuracy of specified bathymetry/topography, dissipation parameterizations, air-sea drag formulations, and the fidelity of forcing functions. Wind forcing skill can be particularly prone to errors, especially at the land-ocean interface. The resulting biases and errors can be addressed holistically with a machine-learning (ML) approach. Herein, we weakly couple the Temporal Fusion Transformer to the National Oceanic and Atmospheric Administration’s (NOAA) Storm and Tide Operational Forecast System (STOFS-2D-Global) to improve its forecasting skill throughout a 7-day horizon. We demonstrate the transformer’s ability to enrich the hydrodynamic model’s output at 228 observed water level stations operated by NOAA’s National Ocean Service. We conclude that the transformer is a rapid way to correct STOFS-2D-Global forecasted water levels provided that sufficient covariates are supplied. For stations in wind-dominant areas, we demonstrate that including past and future wind-speed covariates makes for a more skillful forecast. In general, while the transformer renders consistent corrections at both tidally and wind-dominant stations, it does so most aggressively at tidally-dominant stations. We show notable improvements in Alaska and the Atlantic and Pacific seaboards of the United States. We evaluate several transformers instantiated with different hyperparameters, covariates, and training data to provide guidance on how to enhance performance.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.