Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2025-01-25 DOI:10.1016/j.actphy.2025.100054
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji
{"title":"Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME","authors":"Liuyun Chen ,&nbsp;Wenju Wang ,&nbsp;Tairong Lu ,&nbsp;Xuan Luo ,&nbsp;Xinling Xie ,&nbsp;Kelin Huang ,&nbsp;Shanli Qin ,&nbsp;Tongming Su ,&nbsp;Zuzeng Qin ,&nbsp;Hongbing Ji","doi":"10.1016/j.actphy.2025.100054","DOIUrl":null,"url":null,"abstract":"<div><div>Plasma-activated heterogeneous catalysis is a promising strategy for catalytic CO<sub>2</sub> hydrogenation under mild conditions. In this study, pore structures with deep pore channels were constructed on Al<sub>2</sub>O<sub>3</sub>-<em>x via</em> a soft template method, and Cu/Al<sub>2</sub>O<sub>3</sub>-<em>x</em> was prepared by an impregnation method, with Al<sub>2</sub>O<sub>3</sub>-<em>x</em> serving as the support for plasma-catalyzed CO<sub>2</sub> hydrogenation to dimethyl ether (DME). Cu/Al<sub>2</sub>O<sub>3</sub>-0.75/HZSM-5 demonstrated a high performance and discharge efficiency for plasma-catalyzed CO<sub>2</sub> hydrogenation. The CO<sub>2</sub> conversion and DME yield for plasma-catalyzed CO<sub>2</sub> hydrogenation on Cu/Al<sub>2</sub>O<sub>3</sub>-0.75/HZSM-5 reached 21.98% and 9.83%, respectively, with selectivities for CO, CH<sub>3</sub>OH, and DME on Cu/Al<sub>2</sub>O<sub>3</sub>-0.75/HZSM-5 of 25.39%, 29.89%, and 44.72%, respectively. The deep pore structures on Al<sub>2</sub>O<sub>3</sub>-<em>x</em> serve as Cu loading sites, and the confinement effect of the pores enhances the metal-support interaction and Cu metal dispersion. More abundant and stronger Brønsted basic and Lewis acidic sites facilitate the activation and hydrogenation of CO<sub>2</sub>. Notably, the electric field formed by Cu sites anchored in the deep pore channel structures is conducive to guiding the activated plasma CO<sub>2</sub> intermediates into the difficult-to-access pores for hydrogenation. Hydrogenation of the plasma-activated CO<sub>2</sub> intermediates in the deep pore channels is crucial for improving plasma-catalyzed CO<sub>2</sub> hydrogenation to DME.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100054"},"PeriodicalIF":13.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000104","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma-activated heterogeneous catalysis is a promising strategy for catalytic CO2 hydrogenation under mild conditions. In this study, pore structures with deep pore channels were constructed on Al2O3-x via a soft template method, and Cu/Al2O3-x was prepared by an impregnation method, with Al2O3-x serving as the support for plasma-catalyzed CO2 hydrogenation to dimethyl ether (DME). Cu/Al2O3-0.75/HZSM-5 demonstrated a high performance and discharge efficiency for plasma-catalyzed CO2 hydrogenation. The CO2 conversion and DME yield for plasma-catalyzed CO2 hydrogenation on Cu/Al2O3-0.75/HZSM-5 reached 21.98% and 9.83%, respectively, with selectivities for CO, CH3OH, and DME on Cu/Al2O3-0.75/HZSM-5 of 25.39%, 29.89%, and 44.72%, respectively. The deep pore structures on Al2O3-x serve as Cu loading sites, and the confinement effect of the pores enhances the metal-support interaction and Cu metal dispersion. More abundant and stronger Brønsted basic and Lewis acidic sites facilitate the activation and hydrogenation of CO2. Notably, the electric field formed by Cu sites anchored in the deep pore channel structures is conducive to guiding the activated plasma CO2 intermediates into the difficult-to-access pores for hydrogenation. Hydrogenation of the plasma-activated CO2 intermediates in the deep pore channels is crucial for improving plasma-catalyzed CO2 hydrogenation to DME.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软模板诱导Cu/Al2O3深孔结构促进等离子体催化CO2加氢制二甲醚
等离子体活化多相催化是一种在温和条件下催化CO2加氢的有前途的方法。本研究通过软模板法在Al2O3-x上构建了具有深孔道的孔隙结构,并采用浸渍法制备了Cu/Al2O3-x, Al2O3-x作为等离子体催化CO2加氢制二甲醚(DME)的载体。Cu/Al2O3-0.75/HZSM-5具有较高的等离子体催化CO2加氢性能和放电效率。Cu/Al2O3-0.75/HZSM-5上等离子体催化CO2加氢的CO2转化率和DME产率分别达到21.98%和9.83%,CO、CH3OH和DME在Cu/Al2O3-0.75/HZSM-5上的选择性分别为25.39%、29.89%和44.72%。Al2O3-x表面的深层孔隙结构作为Cu的加载位点,孔隙的约束作用增强了金属-载体相互作用和Cu -金属的分散。更丰富和更强的Brønsted碱性和Lewis酸性位点有利于CO2的活化和加氢。值得注意的是,Cu位点锚定在深孔通道结构中形成的电场有利于引导活化的等离子体CO2中间体进入难以进入的孔中进行加氢。等离子体活化的CO2中间体在深孔通道中加氢是提高等离子体催化CO2加氢制二甲醚的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Machine learning potentials for property predictions of two-dimensional group-III nitrides Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries MOF/MOF nanosheets S-scheme heterojunction for accelerated charge kinetics and efficient photocatalytic H2 evolution 2D COF photocatalyst with highly stabilized tautomeric transition and singlet oxygen generation Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1