Dogukan Aksu , Ismail Hakki Toroslu , Hasan Davulcu
{"title":"Neighborhood search with heuristic-based feature selection for click-through rate prediction","authors":"Dogukan Aksu , Ismail Hakki Toroslu , Hasan Davulcu","doi":"10.1016/j.engappai.2025.110261","DOIUrl":null,"url":null,"abstract":"<div><div>Click-through-rate (CTR) prediction is crucial in online advertising and recommender systems. Maximizing CTR has been a major focus, leading to the development of numerous models designed to capture implicit and explicit feature interactions. However, extracting both low-order and high-order interactions remains challenging, as irrelevant features can increase computational costs and reduce prediction accuracy. Feature performance may also vary across predictive models and fluctuate due to traffic changes, making efficient feature selection essential in live environments where both training and inference times are critical. Traditional filter-based feature selection methods often fail to dynamically identify the most impactful features. This paper introduces a greedy heuristic, called Neighborhood Search with Heuristic-based Feature Selection (NeSHFS), to enhance CTR prediction by iteratively refining the feature set. NeSHFS employs a grid-search-like strategy to identify and retain the most relevant features, effectively reducing dimensionality and computational costs. Comprehensive experiments on several public datasets validate this approach, demonstrating improved prediction performance and reduced training times.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"146 ","pages":"Article 110261"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625002611","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Click-through-rate (CTR) prediction is crucial in online advertising and recommender systems. Maximizing CTR has been a major focus, leading to the development of numerous models designed to capture implicit and explicit feature interactions. However, extracting both low-order and high-order interactions remains challenging, as irrelevant features can increase computational costs and reduce prediction accuracy. Feature performance may also vary across predictive models and fluctuate due to traffic changes, making efficient feature selection essential in live environments where both training and inference times are critical. Traditional filter-based feature selection methods often fail to dynamically identify the most impactful features. This paper introduces a greedy heuristic, called Neighborhood Search with Heuristic-based Feature Selection (NeSHFS), to enhance CTR prediction by iteratively refining the feature set. NeSHFS employs a grid-search-like strategy to identify and retain the most relevant features, effectively reducing dimensionality and computational costs. Comprehensive experiments on several public datasets validate this approach, demonstrating improved prediction performance and reduced training times.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.