Mitotane activates ATF4/ATF3 axis triggering endoplasmic reticulum stress in adrenocortical carcinoma cells

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2025-02-17 DOI:10.1016/j.biopha.2025.117917
Aurora Schiavon , Laura Saba , Carlotta Evaristo , Jessica Petiti , Ymera Pignochino , Giulio Ferrero , Giorgia Giordano , Cristina Tucciarello , Soraya Puglisi , Giuseppe Reimondo , Massimo Terzolo , Marco Lo Iacono
{"title":"Mitotane activates ATF4/ATF3 axis triggering endoplasmic reticulum stress in adrenocortical carcinoma cells","authors":"Aurora Schiavon ,&nbsp;Laura Saba ,&nbsp;Carlotta Evaristo ,&nbsp;Jessica Petiti ,&nbsp;Ymera Pignochino ,&nbsp;Giulio Ferrero ,&nbsp;Giorgia Giordano ,&nbsp;Cristina Tucciarello ,&nbsp;Soraya Puglisi ,&nbsp;Giuseppe Reimondo ,&nbsp;Massimo Terzolo ,&nbsp;Marco Lo Iacono","doi":"10.1016/j.biopha.2025.117917","DOIUrl":null,"url":null,"abstract":"<div><div>Adrenocortical Carcinoma is a rare and aggressive endocrine malignancy, that arises from cells of one of the three cortical layers of the adrenal gland. Radical surgery is the only curative treatment, even if recurrence rates are high. Therapeutic options are limited, with mitotane as the cornerstone of medical therapy. Despite 50 years of clinical use, the mechanism of action of mitotane has not yet been fully established, possibly due to the drug’s susceptibility to interaction with confounding factors that reduce its biological activity. In the present study, we evaluated by RNAseq the effect of mitotane on gene expression in the H295R cell line, in an environment free of known confounding factors. Our approach allowed us to identify transcriptional deregulation of the ATF4/ATF3 axis, often involved in ER stress. These results were also validated by ddPCR in independent experiments. Mitotane-mediated ATF4 overexpression was also confirmed at the protein level. We observed how an incremental concentration of mitotane could deregulate main biological pathways. Further, we confirmed, both at RNAseq and ddPCR level, the mitotane-mediated downmodulation of genes such as <em>STAR</em>, <em>CYP11A1</em>, <em>CYP21A2</em>, and <em>HSD3B2</em>, highlighting its effect on steroid hormones biosynthesis. Through our approach, we identified biological pathways altered by mitotane in early response stages and with low drug concentrations. Some of these pathways could potentially be investigated in the future as functional biomarkers to monitor adrenocortical carcinoma treatment or as new pharmacological targets for this rare disease.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"184 ","pages":"Article 117917"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001118","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Adrenocortical Carcinoma is a rare and aggressive endocrine malignancy, that arises from cells of one of the three cortical layers of the adrenal gland. Radical surgery is the only curative treatment, even if recurrence rates are high. Therapeutic options are limited, with mitotane as the cornerstone of medical therapy. Despite 50 years of clinical use, the mechanism of action of mitotane has not yet been fully established, possibly due to the drug’s susceptibility to interaction with confounding factors that reduce its biological activity. In the present study, we evaluated by RNAseq the effect of mitotane on gene expression in the H295R cell line, in an environment free of known confounding factors. Our approach allowed us to identify transcriptional deregulation of the ATF4/ATF3 axis, often involved in ER stress. These results were also validated by ddPCR in independent experiments. Mitotane-mediated ATF4 overexpression was also confirmed at the protein level. We observed how an incremental concentration of mitotane could deregulate main biological pathways. Further, we confirmed, both at RNAseq and ddPCR level, the mitotane-mediated downmodulation of genes such as STAR, CYP11A1, CYP21A2, and HSD3B2, highlighting its effect on steroid hormones biosynthesis. Through our approach, we identified biological pathways altered by mitotane in early response stages and with low drug concentrations. Some of these pathways could potentially be investigated in the future as functional biomarkers to monitor adrenocortical carcinoma treatment or as new pharmacological targets for this rare disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Right ventricular dysfunction following surgical repair of tetralogy of Fallot: Molecular pathways and therapeutic prospects Structure-activity relationship analysis of mono-methylated quercetins by comprehensive MS/MS analysis and anti-proliferative efficacy in human colorectal cancer cells Unlocking the molecular mechanisms of anticancer and immunomodulatory potentials of cariprazine in triple negative breast cancer 1-benzyl-6-nitro-4-phenyl-4-(methoxycarbonyl)-2(1H)-pyridinone, a novel pirfenidone derivative, alleviate hepatic fibrosis through T cells Pharmacological interactions of sulforaphane and gabapentin in a murine fibromyalgia-like pain model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1