Context-aware inverse reinforcement learning for modeling individuals’ daily activity schedules

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2025-02-17 DOI:10.1016/j.engappai.2025.110279
Dongjie Liu , Dawei Li , Kun Gao , Yuchen Song , Zijie Zhou
{"title":"Context-aware inverse reinforcement learning for modeling individuals’ daily activity schedules","authors":"Dongjie Liu ,&nbsp;Dawei Li ,&nbsp;Kun Gao ,&nbsp;Yuchen Song ,&nbsp;Zijie Zhou","doi":"10.1016/j.engappai.2025.110279","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding individual and crowd dynamics in urban environments is critical for numerous applications, such as urban planning, traffic forecasting, and location-based services. Therefore, accurately modeling individuals' daily activity schedules is essential. Traditional methods, like utility-based and rule-based approaches, rely on expert knowledge and presumed model structures. While machine learning methods offer flexibility, they often ignore explicit behavioral mechanisms, particularly comprehensive discussion and integration of context related to individuals' daily travel. To address these, we propose a framework that integrates travel context with deep Inverse Reinforcement Learning (IRL), learning temporal patterns from sociodemographics, start time and duration of the current activity, travel modes, and land use. Specifically, individuals' activity schedules are initially formulated as a Markov Decision Process to simulate travelers’ sequential decision-making processes, laying the groundwork for the IRL framework; Then, a context-aware IRL method is proposed to model individuals' travel decision-making from observed temporal trajectories. Finally, we validate the proposed model by demonstrating its superior performance over discrete choice model and several well-known imitation learning benchmarks in tasks such as policy performance comparison, reward recovery, model generalizability, and computational efficiency using travel behavior datasets. This approach provides meaningful behavioral insights and paves the way for Artificial Intelligence-driven activity schedulers modeling.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"146 ","pages":"Article 110279"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625002799","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding individual and crowd dynamics in urban environments is critical for numerous applications, such as urban planning, traffic forecasting, and location-based services. Therefore, accurately modeling individuals' daily activity schedules is essential. Traditional methods, like utility-based and rule-based approaches, rely on expert knowledge and presumed model structures. While machine learning methods offer flexibility, they often ignore explicit behavioral mechanisms, particularly comprehensive discussion and integration of context related to individuals' daily travel. To address these, we propose a framework that integrates travel context with deep Inverse Reinforcement Learning (IRL), learning temporal patterns from sociodemographics, start time and duration of the current activity, travel modes, and land use. Specifically, individuals' activity schedules are initially formulated as a Markov Decision Process to simulate travelers’ sequential decision-making processes, laying the groundwork for the IRL framework; Then, a context-aware IRL method is proposed to model individuals' travel decision-making from observed temporal trajectories. Finally, we validate the proposed model by demonstrating its superior performance over discrete choice model and several well-known imitation learning benchmarks in tasks such as policy performance comparison, reward recovery, model generalizability, and computational efficiency using travel behavior datasets. This approach provides meaningful behavioral insights and paves the way for Artificial Intelligence-driven activity schedulers modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
An integrated method of hotel site selection based on probabilistic linguistic multi-attribute group decision making Novel q-Rung Orthopair Fuzzy distance based similarity measure and score function in real life decision making Interpreting injection molding quality defect using explainable artificial intelligence and analysis of variance Not all samples are equal: Boosting action segmentation via selective incremental learning Fault diagnosis method of mining vibrating screen mesh based on an improved algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1