{"title":"Performance analysis of hybrid perovskite solar cells based on different halide ions","authors":"Deepak Kumar Jarwal , Ashwini Kumar Mishra , Chandani Dubey , Amit Kumar Jangid , Kshitij Bhargava , Rahul Kumar , Gopal Rawat","doi":"10.1016/j.ssc.2025.115863","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we have investigated the importance of incorporating different halide ions into perovskite material of the hybrid perovskites-based solar cells (PSCs) and optimized the performance of the PSCs. The n-i-p device structure as FTO/ZnOS/Absorber Material/CuO/Au, is used, where ZnOS and CuO are as electron and hole transport layers, respectively. The <span><math><mrow><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>NH</mi><mn>3</mn></msub><mi>Pb</mi><msub><mi>I</mi><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>NH</mi><mn>3</mn></msub><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>NH</mi><mn>3</mn></msub><mi>Pb</mi><msub><mi>I</mi><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub><msub><mi>Cl</mi><mi>x</mi></msub></mrow></math></span> are exploited as an active absorber layer, with FTO and Au serving as front and back electrodes, respectively. Their performance is studied in terms of various performance parameters viz. Open-circuit voltage (<span><math><mrow><msub><mi>V</mi><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span>), short circuit current density (<span><math><mrow><msub><mi>J</mi><mrow><mi>s</mi><mi>c</mi></mrow></msub></mrow></math></span>), fill factor (FF), and power conversion efficiency (PCE). Moreover, a systematic optimization and comparison is conducted to examine the influence of perovskite layer thickness, defect density, and operating temperature on the performance of the three modelled PSCs. The results show that <span><math><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mn>3</mn></msub><msub><mrow><mi>N</mi><mi>H</mi></mrow><mn>3</mn></msub><mi>P</mi><mi>b</mi><msub><mi>I</mi><mn>3</mn></msub></mrow></math></span> based hybrid PSC exhibits the highest PCE of 25.34 % at 300 K, at a defect density of <span><math><mrow><msup><mn>10</mn><mn>15</mn></msup><msup><mrow><mi>c</mi><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> and absorber layer thickness of 600 nm. The other key parameters include V<sub>OC</sub> of 1.15 V, <span><math><mrow><msub><mi>J</mi><mi>SC</mi></msub></mrow></math></span> of 25.21 mA/cm<sup>2</sup> and FF of 86.4 %. The analysis highlights the importance of numerical simulations in predicting the influence of structural variations in perovskite materials on performance of the hybrid perovskite solar cells.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"399 ","pages":"Article 115863"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825000389","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we have investigated the importance of incorporating different halide ions into perovskite material of the hybrid perovskites-based solar cells (PSCs) and optimized the performance of the PSCs. The n-i-p device structure as FTO/ZnOS/Absorber Material/CuO/Au, is used, where ZnOS and CuO are as electron and hole transport layers, respectively. The , and are exploited as an active absorber layer, with FTO and Au serving as front and back electrodes, respectively. Their performance is studied in terms of various performance parameters viz. Open-circuit voltage (), short circuit current density (), fill factor (FF), and power conversion efficiency (PCE). Moreover, a systematic optimization and comparison is conducted to examine the influence of perovskite layer thickness, defect density, and operating temperature on the performance of the three modelled PSCs. The results show that based hybrid PSC exhibits the highest PCE of 25.34 % at 300 K, at a defect density of and absorber layer thickness of 600 nm. The other key parameters include VOC of 1.15 V, of 25.21 mA/cm2 and FF of 86.4 %. The analysis highlights the importance of numerical simulations in predicting the influence of structural variations in perovskite materials on performance of the hybrid perovskite solar cells.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.