Moving force identification based on multi-task decomposition and sparse regularization

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2025-02-18 DOI:10.1016/j.ymssp.2025.112472
Chudong Pan, Xiaodong Chen, Zeke Xu, Haoming Zeng
{"title":"Moving force identification based on multi-task decomposition and sparse regularization","authors":"Chudong Pan,&nbsp;Xiaodong Chen,&nbsp;Zeke Xu,&nbsp;Haoming Zeng","doi":"10.1016/j.ymssp.2025.112472","DOIUrl":null,"url":null,"abstract":"<div><div>High-accuracy and efficient moving force identification (MFI) serves as an indirect approach that has the potential to meet real-time monitoring of vehicle-bridge interaction forces. The parallel computing-oriented method developed based on time-domain segmentation has demonstrated its advantages in the rapid identification of dynamic forces. However, this method has no strategy in place to highlight the global signal feature of dynamic forces. This study inherits a framework of the existing parallel computing-oriented method, attempting to identify the moving forces in a shorter amount of time by using a parallelizable multi-task optimal method. The proposed method establishes multiple MFI tasks based on a finite number of local time ranges. Each MFI task aims to estimate the moving forces happening within its local analysis duration and the corresponding initial vibration state of the structure. The identified equations for multiple tasks are built based on sparse regularization, intending to improve the ill-posed nature of the MFI inverse problems. To ensure that the identified moving force has an overall horizontal trend line, additional constraint conditions are defined mathematically and added to the sparse regularization-based equations, aiming to limit the differences among all the average values of the moving forces that are identified from different tasks, and resulting in a group of constrained identified equations. By relaxing the added constraints, a practical iterative algorithm is proposed for solving the multi-task MFI problem, wherein, the identified processes of different tasks in each iteration can be solved by parallel computing. Numerical and experimental studies verify the feasibility and effectiveness of the proposed method in identifying moving forces. The comparative analysis highlights its advantages in fast computation rather than the existing <em>l</em><sub>1</sub>-norm regularization-based method in the considered cases. Some relative issues are discussed as well.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112472"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001736","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-accuracy and efficient moving force identification (MFI) serves as an indirect approach that has the potential to meet real-time monitoring of vehicle-bridge interaction forces. The parallel computing-oriented method developed based on time-domain segmentation has demonstrated its advantages in the rapid identification of dynamic forces. However, this method has no strategy in place to highlight the global signal feature of dynamic forces. This study inherits a framework of the existing parallel computing-oriented method, attempting to identify the moving forces in a shorter amount of time by using a parallelizable multi-task optimal method. The proposed method establishes multiple MFI tasks based on a finite number of local time ranges. Each MFI task aims to estimate the moving forces happening within its local analysis duration and the corresponding initial vibration state of the structure. The identified equations for multiple tasks are built based on sparse regularization, intending to improve the ill-posed nature of the MFI inverse problems. To ensure that the identified moving force has an overall horizontal trend line, additional constraint conditions are defined mathematically and added to the sparse regularization-based equations, aiming to limit the differences among all the average values of the moving forces that are identified from different tasks, and resulting in a group of constrained identified equations. By relaxing the added constraints, a practical iterative algorithm is proposed for solving the multi-task MFI problem, wherein, the identified processes of different tasks in each iteration can be solved by parallel computing. Numerical and experimental studies verify the feasibility and effectiveness of the proposed method in identifying moving forces. The comparative analysis highlights its advantages in fast computation rather than the existing l1-norm regularization-based method in the considered cases. Some relative issues are discussed as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
Tool wear state recognition study based on an MTF and a vision transformer with a Kolmogorov-Arnold network Main shaft instantaneous azimuth estimation for wind turbines Refined sticking monitoring of drilling tool for drilling rig in underground coal mine: From mechanism analysis to data mining Active motion control of platform and rotor coupling system for floating offshore wind turbines In-process analysis of the dynamic deformation of a bionic lightweight gear
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1