Jianing Liu , Hongrui Cao , Jaspreet Singh Dhupia , Madhurjya Dev Choudhury , Yang Fu , Siwen Chen , Jinhui Li , Bin Yv
{"title":"An adaptive source-free unsupervised domain adaptation method for mechanical fault detection","authors":"Jianing Liu , Hongrui Cao , Jaspreet Singh Dhupia , Madhurjya Dev Choudhury , Yang Fu , Siwen Chen , Jinhui Li , Bin Yv","doi":"10.1016/j.ymssp.2025.112475","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-machine fault detection is crucial due to the challenges of data labeling. While domain adaptation methods facilitate diagnosis across rotating machines, they often require data sharing, which is impractical due to privacy concerns and large data transmission. Although domain generalization and source-free unsupervised domain adaptation (SFUDA) methods address privacy issues, most fail to consider dynamic distribution shifts within and between domains, limiting their effectiveness. To overcome this challenge, an adaptive SFUDA method named AI3M is proposed. The AI3M pre-trains a source model with intra- and inter-domain information maximization loss to reduce distribution shifts within and between domains, and then adapts the model with a target-guided adaptation strategy to minimize the dynamic gap between different machines. Experiments on datasets from 11 wind turbines across 8 wind farms show that the proposed method outperforms state-of-the-art DG and SFUDA approaches, achieving superior cross-machine fault detection performance.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112475"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001761","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-machine fault detection is crucial due to the challenges of data labeling. While domain adaptation methods facilitate diagnosis across rotating machines, they often require data sharing, which is impractical due to privacy concerns and large data transmission. Although domain generalization and source-free unsupervised domain adaptation (SFUDA) methods address privacy issues, most fail to consider dynamic distribution shifts within and between domains, limiting their effectiveness. To overcome this challenge, an adaptive SFUDA method named AI3M is proposed. The AI3M pre-trains a source model with intra- and inter-domain information maximization loss to reduce distribution shifts within and between domains, and then adapts the model with a target-guided adaptation strategy to minimize the dynamic gap between different machines. Experiments on datasets from 11 wind turbines across 8 wind farms show that the proposed method outperforms state-of-the-art DG and SFUDA approaches, achieving superior cross-machine fault detection performance.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems