Ming Sheng , Shuliang Wang , Yong Zhang , Kaige Wang , Jingyi Wang , Yi Luo , Rui Hao
{"title":"MQRLD: A multimodal data retrieval platform with query-aware feature representation and learned index based on data lake","authors":"Ming Sheng , Shuliang Wang , Yong Zhang , Kaige Wang , Jingyi Wang , Yi Luo , Rui Hao","doi":"10.1016/j.ipm.2025.104101","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal data has become a crucial element in the realm of big data analytics, driving advancements in data exploration, data mining, and empowering artificial intelligence applications. To support high-quality retrieval for these cutting-edge applications, a robust multimodal data retrieval platform should meet the challenges of transparent data storage, rich hybrid queries, effective feature representation, and high query efficiency. However, among the existing platforms, traditional schema-on-write systems, multi-model databases, vector databases, and data lakes, which are the primary options for multimodal data retrieval, make it difficult to fulfill these challenges simultaneously. Therefore, there is an urgent need to develop a more versatile multimodal data retrieval platform to address these issues.</div><div>In this paper, we introduce a <u><strong>M</strong></u>ultimodal Data Retrieval Platform with <u><strong>Q</strong></u>uery-aware Feature <u><strong>R</strong></u>epresentation and <u><strong>L</strong></u>earned Index based on <u><strong>D</strong></u>ata Lake (<strong>MQRLD</strong>). It leverages the transparent storage capabilities of data lakes, integrates the multimodal open API to provide a unified interface that supports rich hybrid queries, introduces a query-aware multimodal data feature representation strategy to obtain effective features, and offers high-dimensional learned indexes to optimize data query. We conduct a comparative analysis of the query performance of MQRLD against other methods for rich hybrid queries. Our results underscore the superior efficiency of MQRLD in handling multimodal data retrieval tasks, demonstrating its potential to significantly improve retrieval performance in complex environments. We also clarify some potential concerns in the discussion.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104101"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000433","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal data has become a crucial element in the realm of big data analytics, driving advancements in data exploration, data mining, and empowering artificial intelligence applications. To support high-quality retrieval for these cutting-edge applications, a robust multimodal data retrieval platform should meet the challenges of transparent data storage, rich hybrid queries, effective feature representation, and high query efficiency. However, among the existing platforms, traditional schema-on-write systems, multi-model databases, vector databases, and data lakes, which are the primary options for multimodal data retrieval, make it difficult to fulfill these challenges simultaneously. Therefore, there is an urgent need to develop a more versatile multimodal data retrieval platform to address these issues.
In this paper, we introduce a Multimodal Data Retrieval Platform with Query-aware Feature Representation and Learned Index based on Data Lake (MQRLD). It leverages the transparent storage capabilities of data lakes, integrates the multimodal open API to provide a unified interface that supports rich hybrid queries, introduces a query-aware multimodal data feature representation strategy to obtain effective features, and offers high-dimensional learned indexes to optimize data query. We conduct a comparative analysis of the query performance of MQRLD against other methods for rich hybrid queries. Our results underscore the superior efficiency of MQRLD in handling multimodal data retrieval tasks, demonstrating its potential to significantly improve retrieval performance in complex environments. We also clarify some potential concerns in the discussion.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.