Chlorine tailored CdOxCly/Al2O3 for syngas formation in electrochemical CO2 reduction†

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2025-01-20 DOI:10.1039/d4cy01426j
Xin Wang , Zhen-Hong He , Hui-Hui Cao , Yu-Xuan Ji , Xuan-Lu Fan , Rui-Peng Yan , Kuan Wang , Weitao Wang , Lu Li , Zhao-Tie Liu
{"title":"Chlorine tailored CdOxCly/Al2O3 for syngas formation in electrochemical CO2 reduction†","authors":"Xin Wang ,&nbsp;Zhen-Hong He ,&nbsp;Hui-Hui Cao ,&nbsp;Yu-Xuan Ji ,&nbsp;Xuan-Lu Fan ,&nbsp;Rui-Peng Yan ,&nbsp;Kuan Wang ,&nbsp;Weitao Wang ,&nbsp;Lu Li ,&nbsp;Zhao-Tie Liu","doi":"10.1039/d4cy01426j","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic carbon dioxide reduction (eCO<sub>2</sub>RR) is widely recognized as one of the most promising approaches to produce valuable chemicals especially syngas and mitigate carbon emissions. Hence, it holds immense significance to develop novel catalysts with exceptional efficiency and stability. In the present work, we presented the eCO<sub>2</sub>RR to syngas over a CdO<sub><em>x</em></sub>Cl<sub><em>y</em></sub>/Al<sub>2</sub>O<sub>3</sub> nanorod catalyst (denoted as CdO<sub><em>x</em></sub>Cl<sub><em>y</em></sub>/Al<sub>2</sub>O<sub>3</sub> NRs) in an H-type cell. The results showed that the catalyst provides an adjustable H<sub>2</sub>/CO ratio over a wide potential range of −1.0 V to −1.4 V (<em>vs.</em> RHE). The current density reached 59 mA cm<sup>−2</sup> at a potential of −1.4 V (<em>vs.</em> RHE) in 0.5 M KHCO<sub>3</sub> electrolyte. The introduction of chlorine increased the conductivity of the catalyst and promoted the electron transfer, which was further conducive to the production of CO. The preparation strategy of catalysts has important guiding significance for the design and preparation of catalysts with high efficiency in the eCO<sub>2</sub>RR to syngas.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 4","pages":"Pages 1082-1089"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000164","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic carbon dioxide reduction (eCO2RR) is widely recognized as one of the most promising approaches to produce valuable chemicals especially syngas and mitigate carbon emissions. Hence, it holds immense significance to develop novel catalysts with exceptional efficiency and stability. In the present work, we presented the eCO2RR to syngas over a CdOxCly/Al2O3 nanorod catalyst (denoted as CdOxCly/Al2O3 NRs) in an H-type cell. The results showed that the catalyst provides an adjustable H2/CO ratio over a wide potential range of −1.0 V to −1.4 V (vs. RHE). The current density reached 59 mA cm−2 at a potential of −1.4 V (vs. RHE) in 0.5 M KHCO3 electrolyte. The introduction of chlorine increased the conductivity of the catalyst and promoted the electron transfer, which was further conducive to the production of CO. The preparation strategy of catalysts has important guiding significance for the design and preparation of catalysts with high efficiency in the eCO2RR to syngas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电化学二氧化碳还原过程中生成合成气的氯定制 CdOxCly/Al2O3†
电催化二氧化碳还原(eCO2RR)被广泛认为是最有前途的生产有价值化学品(特别是合成气)和减少碳排放的方法之一。因此,开发具有优异效率和稳定性的新型催化剂具有重要意义。在目前的工作中,我们在h型电池中通过CdOxCly/Al2O3纳米棒催化剂(表示为CdOxCly/Al2O3 NRs)将eCO2RR转化为合成气。结果表明,该催化剂在−1.0 V ~−1.4 V(相对于RHE)的宽电位范围内提供了可调的H2/CO比。在0.5 M KHCO3电解质中,在−1.4 V (vs. RHE)电位下,电流密度达到59 mA cm−2。氯的引入提高了催化剂的导电性,促进了电子的转移,进一步有利于CO的生成。催化剂的制备策略对eCO2RR制合成气中高效催化剂的设计和制备具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Single-enzyme redox-neutral oxidation of alcohols to carboxylic acids using alcohol dehydrogenases. Solvoselective effect of Cu–B2O3/porous boron nitride on catalytic conversion of arylboric acids to phenols and biphenyls A comparative study of electrochemical CO2 reduction on hydrothermally synthesized carbon nanosphere-supported Ni-, Cu-, and NiCu-hydroxide catalysts IrRu nanoparticles boosted by Ir/Ru–N–C for acidic hydrogen oxidation with high CO tolerance Synergistic adsorption–photocatalysis in α-Fe2O3/PDINH Z-scheme heterojunction for efficient azo dye wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1