Haitao Huang , Zhijie Chen , Haijin Li , Yongtao Li , Xiaolong Deng
{"title":"Fe, Co, and Ni co-doped nitrogen-doped carbon nanotubes for the electrocatalytic oxygen reduction reaction†","authors":"Haitao Huang , Zhijie Chen , Haijin Li , Yongtao Li , Xiaolong Deng","doi":"10.1039/d4cy01507j","DOIUrl":null,"url":null,"abstract":"<div><div>The creation of efficient non-precious metals is crucial for advancing electrochemical systems used in energy conversion and storage technologies. This work introduces an exceptionally potent and durable electrocatalyst, a trimetallic nitrogen-enriched carbon nanotube composite (FeCoNi@CNTs-NC-2), synthesized through a process of pyrolysis followed by acid treatment. Electrochemical tests have demonstrated that this catalyst displays remarkable performance and longevity in facilitating the oxygen reduction reaction. Furthermore, when integrated into Zn–air batteries, it delivers outstanding open-circuit voltage, power output, and specific energy capacity. These discoveries offer valuable insights for the engineering of effective and reliable electrocatalysts based on non-precious metal alloys.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 4","pages":"Pages 1238-1246"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000231","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of efficient non-precious metals is crucial for advancing electrochemical systems used in energy conversion and storage technologies. This work introduces an exceptionally potent and durable electrocatalyst, a trimetallic nitrogen-enriched carbon nanotube composite (FeCoNi@CNTs-NC-2), synthesized through a process of pyrolysis followed by acid treatment. Electrochemical tests have demonstrated that this catalyst displays remarkable performance and longevity in facilitating the oxygen reduction reaction. Furthermore, when integrated into Zn–air batteries, it delivers outstanding open-circuit voltage, power output, and specific energy capacity. These discoveries offer valuable insights for the engineering of effective and reliable electrocatalysts based on non-precious metal alloys.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days