Influence of Porosity on Vibration of Porous FG Plates Resting on an Arbitrarily Orthotropic Winkler-Pasternak Foundation by PDDO

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Mechanica Solida Sinica Pub Date : 2024-10-21 DOI:10.1007/s10338-024-00539-8
Yongyu Yang, Xiaoqi Wang, Hang Zhao, Chao Wang, Changzheng Cheng, Raj Das
{"title":"Influence of Porosity on Vibration of Porous FG Plates Resting on an Arbitrarily Orthotropic Winkler-Pasternak Foundation by PDDO","authors":"Yongyu Yang,&nbsp;Xiaoqi Wang,&nbsp;Hang Zhao,&nbsp;Chao Wang,&nbsp;Changzheng Cheng,&nbsp;Raj Das","doi":"10.1007/s10338-024-00539-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the vibration responses of porous functionally graded (FG) thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator (PDDO). It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates. The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory. Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO. The results of the current method are validated through comparison with existing literature. The effects of geometric parameters, material properties, elastic foundation, porosity distribution, and boundary conditions on the frequency are investigated and discussed in detail. The highest fundamental dimensionless frequency occurs under SCSC boundary conditions, while the lowest is under SFSF boundary conditions. The porous FG plate with the fourth pore type, featuring high density of porosity at the top and low at the bottom, exhibits the highest fundamental frequency under SSSS, SFSF, and SCSC boundary conditions. The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 1","pages":"142 - 151"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00539-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the vibration responses of porous functionally graded (FG) thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator (PDDO). It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates. The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory. Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO. The results of the current method are validated through comparison with existing literature. The effects of geometric parameters, material properties, elastic foundation, porosity distribution, and boundary conditions on the frequency are investigated and discussed in detail. The highest fundamental dimensionless frequency occurs under SCSC boundary conditions, while the lowest is under SFSF boundary conditions. The porous FG plate with the fourth pore type, featuring high density of porosity at the top and low at the bottom, exhibits the highest fundamental frequency under SSSS, SFSF, and SCSC boundary conditions. The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
期刊最新文献
Theoretical and Experimental Analysis of Nonlinear Large Tensile Deformation of Superelastic SMA-Based Honeycomb Structures Bending Characteristics of Folded Multi-celled Tubes with Square and Circular Section Geometries Molecular Dynamics Study on the Interactions of 1/2[110] Edge Dislocations with Voids and Ni3Al Precipitates in FCC Ni Stress Waves Propagation Along the Frictional Interface with a Micro-contact Level-Set-Based Topology Optimization of a Geometrically Nonlinear Structure Considering Thermo-mechanical Coupling Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1