Katharina Oehlenschläger, Jan-Niklas Hengsbach, Marianne Volkmar, Roland Ulber
{"title":"From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation","authors":"Katharina Oehlenschläger, Jan-Niklas Hengsbach, Marianne Volkmar, Roland Ulber","doi":"10.1007/s00253-025-13428-y","DOIUrl":null,"url":null,"abstract":"<p>The biological production of butanol via ABE (acetone-butanol-ethanol) fermentation using <i>Clostridium acetobutylicum</i> has a storied history of over 100 years, initially driven by the demand for synthetic rubber during World War I and later for industrial applications. Despite its decline due to the rise of petrochemical alternatives, renewed interest has emerged due to the global shift towards sustainable energy sources and rising oil prices. This review highlights the challenges in the cultivation process of <i>C. acetobutylicum</i>, such as strain degeneration, solvent toxicity, and substrate costs, and presents recent advancements aimed at overcoming these issues. Detailed documentation of the entire cultivation process including cell conservation, pre-culture, and main culture is seen as a fundamental step to facilitate further progress in research. Key strategies to improve production efficiency were identified as controlling pH to facilitate the metabolic shift from acidogenesis to solventogenesis, employing in situ product removal techniques, and advancing metabolic engineering for improved solvent tolerance of <i>C. acetobutylicum</i>. Furthermore, the use of renewable resources, particularly lignocellulosic biomass, positions ABE fermentation as a viable solution for sustainable solvent production. By focusing on innovative research avenues, including co-cultivation and bioelectrochemical systems, the potential for <i>C. acetobutylicum</i> to contribute significantly to a bio-based economy can be realized.</p><p><i>• Historical significance and revival of ABE fermentation with Clostridium acetobutylicum</i></p><p><i>• Current challenges and innovative solutions in cultivating C. acetobutylicum</i></p><p><i>• New avenues for enhancing productivity and sustainability</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13428-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13428-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The biological production of butanol via ABE (acetone-butanol-ethanol) fermentation using Clostridium acetobutylicum has a storied history of over 100 years, initially driven by the demand for synthetic rubber during World War I and later for industrial applications. Despite its decline due to the rise of petrochemical alternatives, renewed interest has emerged due to the global shift towards sustainable energy sources and rising oil prices. This review highlights the challenges in the cultivation process of C. acetobutylicum, such as strain degeneration, solvent toxicity, and substrate costs, and presents recent advancements aimed at overcoming these issues. Detailed documentation of the entire cultivation process including cell conservation, pre-culture, and main culture is seen as a fundamental step to facilitate further progress in research. Key strategies to improve production efficiency were identified as controlling pH to facilitate the metabolic shift from acidogenesis to solventogenesis, employing in situ product removal techniques, and advancing metabolic engineering for improved solvent tolerance of C. acetobutylicum. Furthermore, the use of renewable resources, particularly lignocellulosic biomass, positions ABE fermentation as a viable solution for sustainable solvent production. By focusing on innovative research avenues, including co-cultivation and bioelectrochemical systems, the potential for C. acetobutylicum to contribute significantly to a bio-based economy can be realized.
• Historical significance and revival of ABE fermentation with Clostridium acetobutylicum
• Current challenges and innovative solutions in cultivating C. acetobutylicum
• New avenues for enhancing productivity and sustainability
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.