Formation of Miocene Authigenic Carbonates Within the Shimanto Accretionary Complex, Southwest Japan

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2025-02-17 DOI:10.1029/2024GC011982
H. Hara, M. Utsunomiya, S. Tonai, H. Matsumoto, M. Satish-Kumar
{"title":"Formation of Miocene Authigenic Carbonates Within the Shimanto Accretionary Complex, Southwest Japan","authors":"H. Hara,&nbsp;M. Utsunomiya,&nbsp;S. Tonai,&nbsp;H. Matsumoto,&nbsp;M. Satish-Kumar","doi":"10.1029/2024GC011982","DOIUrl":null,"url":null,"abstract":"<p>Authigenic carbonates in the exhumed Miocene Shimanto accretionary complex (the Nabae carbonates) were studied in the Cape Muroto area to better constrain the formation mechanisms and tectonic setting during carbonate precipitation. Three main types of carbonates were recognized on the basis of morphology: nodular, bedded, and tubular. The δ<sup>13</sup>C values of the carbonates define two distinct groups with relatively low (−31.9‰ to −20.3‰) and relatively high values (−14.7‰ to −4.7‰). The former suggests carbonate precipitation from methane-enriched fluids, while the latter indicates mixing of fluid sources in a range of depositional settings. Most carbonates have REE + Y patterns characterized by well-defined positive Eu and Y anomalies, which we interpret to have formed by mixing between defused hydrothermal fluids and seawater. Other samples are enriched in MREE, a signature that is found in methane-derived cold seep carbonates. Additionally, the carbonates exhibit positive correlations between δ<sup>13</sup>C and various proxies for detrital input (e.g., REE + Y, Zr content, Y/Ho ratios). Based on comparing our observations with drill core and geophysical measurements from the active Nankai accretionary complex, we conclude that the Nabae carbonates were precipitated from relatively low-temperature hydrothermal fluids or as cold seeps near the deformation front at the toe of the Shimanto accretionary complex in a high heat flow environment. As the first onshore example of ancient authigenic carbonates from an accretionary complex, the Nabae carbonates have the potential to reveal important information regarding the characteristics and distribution of hydrothermal areas in active accretionary wedges.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011982","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011982","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Authigenic carbonates in the exhumed Miocene Shimanto accretionary complex (the Nabae carbonates) were studied in the Cape Muroto area to better constrain the formation mechanisms and tectonic setting during carbonate precipitation. Three main types of carbonates were recognized on the basis of morphology: nodular, bedded, and tubular. The δ13C values of the carbonates define two distinct groups with relatively low (−31.9‰ to −20.3‰) and relatively high values (−14.7‰ to −4.7‰). The former suggests carbonate precipitation from methane-enriched fluids, while the latter indicates mixing of fluid sources in a range of depositional settings. Most carbonates have REE + Y patterns characterized by well-defined positive Eu and Y anomalies, which we interpret to have formed by mixing between defused hydrothermal fluids and seawater. Other samples are enriched in MREE, a signature that is found in methane-derived cold seep carbonates. Additionally, the carbonates exhibit positive correlations between δ13C and various proxies for detrital input (e.g., REE + Y, Zr content, Y/Ho ratios). Based on comparing our observations with drill core and geophysical measurements from the active Nankai accretionary complex, we conclude that the Nabae carbonates were precipitated from relatively low-temperature hydrothermal fluids or as cold seeps near the deformation front at the toe of the Shimanto accretionary complex in a high heat flow environment. As the first onshore example of ancient authigenic carbonates from an accretionary complex, the Nabae carbonates have the potential to reveal important information regarding the characteristics and distribution of hydrothermal areas in active accretionary wedges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在室户岬地区对中新世岛户增生复合体(锅江碳酸盐岩)中的自生碳酸盐进行了研究,以更好地确定碳酸盐沉淀过程中的形成机制和构造环境。根据碳酸盐的形态,确定了三种主要类型:结核型、层状和管状。碳酸盐的δ13C值分为相对较低(-31.9‰至-20.3‰)和相对较高(-14.7‰至-4.7‰)两组。前者表明碳酸盐是从富含甲烷的流体中沉淀出来的,而后者则表明在一系列沉积环境中流体源的混合。大多数碳酸盐具有以明确的 Eu 和 Y 正异常为特征的 REE + Y 模式,我们将其解释为热液与海水混合形成。其他样本富含 MREE,这是甲烷冷渗漏碳酸盐的特征。此外,碳酸盐岩的 δ13C 与碎屑输入的各种代用指标(如 REE + Y、Zr 含量、Y/Ho 比)之间呈正相关。通过将我们的观测结果与活跃的南海增生复合体的钻探岩芯和地球物理测量结果进行比较,我们得出结论,锅根碳酸盐岩是在高热流环境下,由相对低温的热液或作为冷渗流在岛根增生复合体脚变形前沿附近析出的。作为来自增生复合体的第一个陆上古自生碳酸盐岩实例,锅根碳酸盐岩有可能揭示有关活动增生楔中热液区的特征和分布的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
A Holocene Paleosecular Variation Record From the Northwestern Ross Sea, Antarctica Mantle Dynamics of the Long-Lived Middle Yangtze Basaltic Field: Insight From a Combined Geochemical and Numerical Modeling Approach Monospecific Diatom Cultures Suggest Potential Interspecies Variation of Diatom-Bound Nitrogen Isotope Signatures Associated With Silica Acquisition Metal-Silicate Partitioning of Si, O, and Mg at High Pressures and High Temperatures: Implications to the Compositional Evolution of Core-Forming Metallic Melts European Arid Anomaly Explained With Southward Drift of Eurasia During the Late Jurassic Polar Shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1