The Energization and Escape of Cold Ions in Dayside Magnetopause Magnetic Reconnection

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-02-17 DOI:10.1029/2024JA033535
Heng Zhang, Bin-Wen Ge, Zhi-Lin Zhu, Kang Zhou, Zhuo-Hui Li, Qing-He Zhang, Hui-Jie Liu, Bin-Bin Tang, Wen-Ya Li
{"title":"The Energization and Escape of Cold Ions in Dayside Magnetopause Magnetic Reconnection","authors":"Heng Zhang,&nbsp;Bin-Wen Ge,&nbsp;Zhi-Lin Zhu,&nbsp;Kang Zhou,&nbsp;Zhuo-Hui Li,&nbsp;Qing-He Zhang,&nbsp;Hui-Jie Liu,&nbsp;Bin-Bin Tang,&nbsp;Wen-Ya Li","doi":"10.1029/2024JA033535","DOIUrl":null,"url":null,"abstract":"<p>At the Earth's dayside magnetopause, a cold ion population of ionospheric or plasmasphere origin is commonly observed at the magnetospheric side. In this study we use a 2.5D Particle-in-Cell simulation to investigate the energization of cold ions in the separatrix near X-line and the escape process. And we identify observation events made by the Magnetospheric Multiscale mission, which provide evidence of the acceleration mechanism of cold ions in separatrix. We track the trajectories of cold ions and conduct an analysis, discovering that the cold ions exhibit a positive drift velocity in the vertical direction of the current sheet and <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>+</mo>\n <msub>\n <mi>v</mi>\n <mrow>\n <mi>c</mi>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>×</mo>\n <mi>B</mi>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $\\mathbf{E}+{\\mathbf{v}}_{ci}\\times \\mathbf{B}\\ne 0$</annotation>\n </semantics></math> in the separatrix, so the cold ions undergo demagnetized motion. The analysis results show that the Hall electric field accelerates the cold ions, and it is followed by gyrations around the magnetic field, which results in the velocity distribution function of cold ions near the separatrix exhibits a ring-like distribution. Both simulation results and observations indicated that cold ions in the asymmetric magnetic reconnection separatrix region near the X-line undergo significant acceleration owing to the effects of <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>×</mo>\n <mi>B</mi>\n </mrow>\n <annotation> $\\mathbf{E}\\times \\mathbf{B}$</annotation>\n </semantics></math>, where Hall electric field and the magnetic field parallel to the current sheet play the primary roles during this process. Although magnetic reconnection opens a channel for cold ion escape, the escape is limited, and we first predict the quantification of the escape rate of the cold ions, approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>0.2</mn>\n <mi>%</mi>\n </mrow>\n <annotation> $0.2\\%$</annotation>\n </semantics></math>. The escape of cold ions from the magnetosphere to the magnetosheath is challenging and rare.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033535","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

At the Earth's dayside magnetopause, a cold ion population of ionospheric or plasmasphere origin is commonly observed at the magnetospheric side. In this study we use a 2.5D Particle-in-Cell simulation to investigate the energization of cold ions in the separatrix near X-line and the escape process. And we identify observation events made by the Magnetospheric Multiscale mission, which provide evidence of the acceleration mechanism of cold ions in separatrix. We track the trajectories of cold ions and conduct an analysis, discovering that the cold ions exhibit a positive drift velocity in the vertical direction of the current sheet and E + v c i × B 0 $\mathbf{E}+{\mathbf{v}}_{ci}\times \mathbf{B}\ne 0$ in the separatrix, so the cold ions undergo demagnetized motion. The analysis results show that the Hall electric field accelerates the cold ions, and it is followed by gyrations around the magnetic field, which results in the velocity distribution function of cold ions near the separatrix exhibits a ring-like distribution. Both simulation results and observations indicated that cold ions in the asymmetric magnetic reconnection separatrix region near the X-line undergo significant acceleration owing to the effects of E × B $\mathbf{E}\times \mathbf{B}$ , where Hall electric field and the magnetic field parallel to the current sheet play the primary roles during this process. Although magnetic reconnection opens a channel for cold ion escape, the escape is limited, and we first predict the quantification of the escape rate of the cold ions, approximately 0.2 % $0.2\%$ . The escape of cold ions from the magnetosphere to the magnetosheath is challenging and rare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Jupiter's Auroral Ionosphere: Juno Microwave Radiometer Observations of Energetic Electron Precipitation Events Auroral Energy Deposition and Conductance During the 2013 St. Patrick's Day Storm: Meso-Scale Contributions Tidal Impact on Quiet-Time Polar Thermosphere Zonal Winds During Northern Winter Sudden Stratospheric Warmings Size-Dependent Surface Charging of Lunar Cavities Exposed to the Solar Wind Joint Time-Domain Modeling Magnetic Field Variations of Ionospheric and Magnetospheric Origin: Conceptual Framework and Practical Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1