The Effect of the Loading-Unloading Cycles on the Tensile Behavior and Structures of Spider Tubular Gland Silk.

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-03-10 Epub Date: 2025-02-17 DOI:10.1021/acsbiomaterials.4c01608
Yi-Qin Hong, Xin-Ru Zhang, Li-Hua Wu, Tai-Yong Lv, Xin-Jun Liao, Gustavo V Guinea, José Pérez-Rigueiro, Ping Jiang
{"title":"The Effect of the Loading-Unloading Cycles on the Tensile Behavior and Structures of Spider Tubular Gland Silk.","authors":"Yi-Qin Hong, Xin-Ru Zhang, Li-Hua Wu, Tai-Yong Lv, Xin-Jun Liao, Gustavo V Guinea, José Pérez-Rigueiro, Ping Jiang","doi":"10.1021/acsbiomaterials.4c01608","DOIUrl":null,"url":null,"abstract":"<p><p>There exists a significant correlation between the microstructural evolution and the mechanical properties of fibers during repeated loading and unloading cycles. Nevertheless, the influence of deformation and the duration of intervals on the structural and tensile behavior of spider silk after repeated stretching at a given strain value has been rarely reported, with the exception of studies focusing on the major ampullate gland silk (Mas) of the spider. In order to investigate the effects of repeated stretching on the structural and mechanical behavior of spider tubular gland silk (Tus), the tensile properties and the changes in semiquantitative protein secondary structure of <i>Argiope bruennichi</i> Tus during loading-unloading cycles were characterized. The results indicate that the typical tensile behavior curves of Tus were irreversibly modified to resemble those of Mas, demonstrating a clear yield region accompanied by a necking phenomenon. The Tus displays remarkable characteristics of repeated stretching and mechanical memory, and it is capable of reproducing the tensile behavior of fibers subjected to one stretch, independent from its previous loading history. The above phenomenon may be caused by repeated stretching leading to the damage and reconstruction of protein structures, including an increase in α-helix content and the rearrangement of spider-silk proteins, enabling them to reproduce their mechanical behavior. These findings may provide valuable insights for the biomimetic design of novel fiber materials, such as the spider silk gut, through the artificial stretching of spider silk glands.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1379-1390"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01608","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

There exists a significant correlation between the microstructural evolution and the mechanical properties of fibers during repeated loading and unloading cycles. Nevertheless, the influence of deformation and the duration of intervals on the structural and tensile behavior of spider silk after repeated stretching at a given strain value has been rarely reported, with the exception of studies focusing on the major ampullate gland silk (Mas) of the spider. In order to investigate the effects of repeated stretching on the structural and mechanical behavior of spider tubular gland silk (Tus), the tensile properties and the changes in semiquantitative protein secondary structure of Argiope bruennichi Tus during loading-unloading cycles were characterized. The results indicate that the typical tensile behavior curves of Tus were irreversibly modified to resemble those of Mas, demonstrating a clear yield region accompanied by a necking phenomenon. The Tus displays remarkable characteristics of repeated stretching and mechanical memory, and it is capable of reproducing the tensile behavior of fibers subjected to one stretch, independent from its previous loading history. The above phenomenon may be caused by repeated stretching leading to the damage and reconstruction of protein structures, including an increase in α-helix content and the rearrangement of spider-silk proteins, enabling them to reproduce their mechanical behavior. These findings may provide valuable insights for the biomimetic design of novel fiber materials, such as the spider silk gut, through the artificial stretching of spider silk glands.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加载-卸载循环对蜘蛛管状腺丝拉伸性能和结构的影响。
在反复加载和卸载循环过程中,纤维的微观组织演变与力学性能之间存在显著的相关性。然而,在给定应变值下反复拉伸后,变形和间隔时间对蜘蛛丝结构和拉伸行为的影响很少有报道,除了关注蜘蛛的主壶状腺丝(Mas)的研究外。为了研究反复拉伸对蜘蛛管状腺丝(Tus)结构和力学行为的影响,对布氏Argiope bruennichi Tus在加载-卸载循环过程中的拉伸性能和半定量蛋白二级结构的变化进行了表征。结果表明,Tus的典型拉伸行为曲线被不可逆地修改为与Mas相似,表现出明显的屈服区并伴有颈缩现象。Tus具有显著的重复拉伸和机械记忆特性,能够独立于之前的加载历史,再现纤维在一次拉伸下的拉伸行为。上述现象可能是由于反复拉伸导致蛋白质结构的破坏和重建,包括α-螺旋含量的增加和蜘蛛丝蛋白的重排,使其能够复制其力学行为。这些发现可能为新型纤维材料的仿生设计提供有价值的见解,例如通过人工拉伸蜘蛛丝腺来设计蜘蛛丝肠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
3D Osteoimmune Stem Cell Spheroids with Osteoinduction and Immunomodulation Dual Functionality for In Vivo Bone Tissue Engineering. An Experimental Study on 3D-Printed Gyroid-Shaped TC4 Porous Scaffolds Guiding Angiogenesis and Osteogenesis in Bone Defect Areas. A Novel Polyetheretherketone-Chondroitin Sulfate Zinc Composite: Enhancing Osseointegration through the Synergistic Effects of Chondroitin Sulfate and Zinc for Advanced Dental Implant Applications. Tissue-Slice Organ-on-Chip Culture of Hypothalamic and Pituitary of Lambs─The Role of Phoenixin-20 as a Modulator of Gonadotrophic Axis. 3D Bioprinting for Spinal Cord Injury: Engineering Scaffolds for Functional Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1