Yeast Cell Wall-Mediated Ileal Targeted Delivery System for IgA Nepharopathy Therapy.

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-03-10 Epub Date: 2025-02-17 DOI:10.1021/acsbiomaterials.4c01941
Chaoying Tian, Mei Yan, Jialing Guo, Yingying Zhou, Bin Du, Genyang Cheng
{"title":"Yeast Cell Wall-Mediated Ileal Targeted Delivery System for IgA Nepharopathy Therapy.","authors":"Chaoying Tian, Mei Yan, Jialing Guo, Yingying Zhou, Bin Du, Genyang Cheng","doi":"10.1021/acsbiomaterials.4c01941","DOIUrl":null,"url":null,"abstract":"<p><p>IgA nephropathy (IgAN) is a primary glomerulonephritis mediated by autoimmunity, characterized by an abnormal increase and the deposition of IgA in the glomeruli. In recent years, most studies have emphasized the crucial role of the gut-kidney axis in the pathogenesis of IgA nephropathy, and the ileal Peyer patches in the intestinal mucosal immune system are the main site for IgA production. Therefore, in this study, hydroxychloroquine (HCQ) and dexamethasone (DXM) were used as model drugs, and yeast cell wall (YCW)-coated oleic acid-grafted chitosan (CSO) was used as a carrier to construct a yeast cell wall oral drug delivery system HCQ/DXM@CSO@YCW. This delivery system achieves ileal targeted delivery through the yeast cell wall (YCW), reduces IgA production, and synergistically regulates the inflammatory pathological environment. The delivery system had good gastrointestinal stability and biocompatibility. <i>In vitro</i> cell experiments had shown the targeted uptake ability of dendritic cells and macrophages, and <i>in vitro</i> intestinal experiments showed that the YCW has ileal targeting properties. <i>In vivo</i> pharmacodynamic experiments showed that the HCQ/DXM@CSO@YCW delivery system could significantly reduce the serum IgA levels and IgA deposition in the renal tissue of IgAN mice, as well as the levels of IL-6, TNF-α, and TGF-β in the renal tissue, improving the pathological morphology of the renal tissue. Therefore, the DXM/HCQ@CSO@YCW oral administration system provided a new intestinal targeted delivery platform for intestinal mucosal immunotherapy in IgA nephropathy.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1498-1509"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01941","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

IgA nephropathy (IgAN) is a primary glomerulonephritis mediated by autoimmunity, characterized by an abnormal increase and the deposition of IgA in the glomeruli. In recent years, most studies have emphasized the crucial role of the gut-kidney axis in the pathogenesis of IgA nephropathy, and the ileal Peyer patches in the intestinal mucosal immune system are the main site for IgA production. Therefore, in this study, hydroxychloroquine (HCQ) and dexamethasone (DXM) were used as model drugs, and yeast cell wall (YCW)-coated oleic acid-grafted chitosan (CSO) was used as a carrier to construct a yeast cell wall oral drug delivery system HCQ/DXM@CSO@YCW. This delivery system achieves ileal targeted delivery through the yeast cell wall (YCW), reduces IgA production, and synergistically regulates the inflammatory pathological environment. The delivery system had good gastrointestinal stability and biocompatibility. In vitro cell experiments had shown the targeted uptake ability of dendritic cells and macrophages, and in vitro intestinal experiments showed that the YCW has ileal targeting properties. In vivo pharmacodynamic experiments showed that the HCQ/DXM@CSO@YCW delivery system could significantly reduce the serum IgA levels and IgA deposition in the renal tissue of IgAN mice, as well as the levels of IL-6, TNF-α, and TGF-β in the renal tissue, improving the pathological morphology of the renal tissue. Therefore, the DXM/HCQ@CSO@YCW oral administration system provided a new intestinal targeted delivery platform for intestinal mucosal immunotherapy in IgA nephropathy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 IgA 肾病治疗的酵母细胞壁回肠靶向给药系统
IgA肾病(IgAN)是一种由自身免疫介导的原发性肾小球肾炎,其特征是肾小球内IgA异常增高和沉积。近年来,大多数研究都强调肠肾轴在IgA肾病发病机制中的关键作用,肠黏膜免疫系统中的回肠Peyer补片是IgA产生的主要部位。因此,本研究以羟氯喹(HCQ)和地塞米松(DXM)为模型药物,以酵母细胞壁(YCW)包被油酸接枝壳聚糖(CSO)为载体,构建酵母细胞壁口服给药系统HCQ/DXM@CSO@YCW。该传递系统通过酵母细胞壁(YCW)实现回肠靶向传递,减少IgA的产生,协同调节炎症病理环境。该给药体系具有良好的胃肠道稳定性和生物相容性。体外细胞实验显示了树突状细胞和巨噬细胞的靶向摄取能力,体外肠道实验显示YCW具有回肠靶向性。体内药效学实验表明,HCQ/DXM@CSO@YCW给药系统可显著降低IgAN小鼠血清IgA水平和肾组织IgA沉积,以及肾组织中IL-6、TNF-α、TGF-β水平,改善肾组织病理形态。因此,DXM/HCQ@CSO@YCW口服给药系统为IgA肾病的肠黏膜免疫治疗提供了一个新的肠道靶向给药平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
LPS
索莱宝
Bovine serum albumin
麦克林
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
麦克林
N-hydroxysuccinimide
麦克林
dexamethasone
麦克林
hydroxychloroquine
麦克林
CS
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
CoCrMo Particles Drive Macrophage Ferroptosis via Inhibiting the Sirtuin 1/NRF2/GPX4 Pathway to Promote Periprosthetic Inflammatory Osteolysis. Thermosensitive Hydrogel Derived from a Human Amniotic Membrane Promotes Diabetic Wound Healing. Residuals of Chemical Cleaning Agents Impair Peri-Implant Cell Viability: An in Vitro Study. Injectable Cisplatin-Loaded Biodegradable Poly(anhydride-ester) for Treating Head and Neck Cancer: Preclinical Studies. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1