Anterior Cingulate Cortex-Anterior Insular Cortex Circuit Mediates Hyperalgesia in Adolescent Mice Experiencing Early Life Stress.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2025-02-17 DOI:10.1021/acschemneuro.4c00884
Meng Li, Kefang Liu, Mingyu Xu, Zhaoyi Chen, Lu Yu, Jingquan Zhang, Chunyan Wang, Cheng Long, Jinxiang Jiang
{"title":"Anterior Cingulate Cortex-Anterior Insular Cortex Circuit Mediates Hyperalgesia in Adolescent Mice Experiencing Early Life Stress.","authors":"Meng Li, Kefang Liu, Mingyu Xu, Zhaoyi Chen, Lu Yu, Jingquan Zhang, Chunyan Wang, Cheng Long, Jinxiang Jiang","doi":"10.1021/acschemneuro.4c00884","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding neurobiological mechanisms underlying changes in behavior and neural activity caused by early life stress (ELS) is essential for improving these adverse outcomes in individuals. ELS incited by exposure to maternal separation (MS) can be defined as a form of social pain, but little is known about the neural mechanism in adolescents with ELS-induced pain sensitization. Employing an MS-induced ELS paradigm in mice, we reported here that both male and female MS mice aged 1-2 months exhibited mechanical and thermal hyperalgesia using paw-withdrawal and hot/cold plate tests. The increased high gamma (γ<sub>high</sub>) oscillations accompanied by the activation of parvalbumin-positive interneurons (PVINs) in the anterior insular cortex (AIC), but not the anterior cingulate cortex (ACC), were shown in MS mice. Moreover, ACC-driven AIC connectivity was enhanced in MS mice, characterized by amplified phase coherence in the delta (δ) and theta (θ) bands and an escalation in the coupling of the ACC θ phase and AIC γ amplitude. Chemogenetic inactivation of AIC PVINs relieved hyperalgesia and altered the ACC-AIC connectivity in MS mice. The observed increase in δ-θ synchronization and PVIN activation in the ACC-AIC circuit indicates this pathway is a therapeutic target for ELS-induced hyperalgesia.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00884","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding neurobiological mechanisms underlying changes in behavior and neural activity caused by early life stress (ELS) is essential for improving these adverse outcomes in individuals. ELS incited by exposure to maternal separation (MS) can be defined as a form of social pain, but little is known about the neural mechanism in adolescents with ELS-induced pain sensitization. Employing an MS-induced ELS paradigm in mice, we reported here that both male and female MS mice aged 1-2 months exhibited mechanical and thermal hyperalgesia using paw-withdrawal and hot/cold plate tests. The increased high gamma (γhigh) oscillations accompanied by the activation of parvalbumin-positive interneurons (PVINs) in the anterior insular cortex (AIC), but not the anterior cingulate cortex (ACC), were shown in MS mice. Moreover, ACC-driven AIC connectivity was enhanced in MS mice, characterized by amplified phase coherence in the delta (δ) and theta (θ) bands and an escalation in the coupling of the ACC θ phase and AIC γ amplitude. Chemogenetic inactivation of AIC PVINs relieved hyperalgesia and altered the ACC-AIC connectivity in MS mice. The observed increase in δ-θ synchronization and PVIN activation in the ACC-AIC circuit indicates this pathway is a therapeutic target for ELS-induced hyperalgesia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Issue Publication Information Issue Editorial Masthead Blocking the p38 MAPK Signaling Pathway in the Rat Hippocampus Alleviates the Depressive-like Behavior Induced by Spinal Cord Injury. Molecular Insights into α-Synuclein Fibrillation: A Raman Spectroscopy and Machine Learning Approach. Synthesis and Evaluation of Benzylic 18F-Labeled N-Biphenylalkynyl Nipecotic Acid Derivatives for PET Imaging of GABA Transporter 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1