Nur77 Promotes Inflammation in Cisplatin-Induced Acute Kidney Injury Through Transactivation of SERPINA3 Mediating Wnt/β-Catenin Pathway.

IF 2.4 4区 医学 Q2 UROLOGY & NEPHROLOGY Nephrology Pub Date : 2025-02-01 DOI:10.1111/nep.70006
Ying Zhou, Zhen Wan, Di Xiong, Zhijun Gong, Feiyan Liu
{"title":"Nur77 Promotes Inflammation in Cisplatin-Induced Acute Kidney Injury Through Transactivation of SERPINA3 Mediating Wnt/β-Catenin Pathway.","authors":"Ying Zhou, Zhen Wan, Di Xiong, Zhijun Gong, Feiyan Liu","doi":"10.1111/nep.70006","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Acute kidney injury (AKI) is the most common complication in the treatment of cisplatin, which is a clinically effective and classical anticancer drug. Orphan Nuclear Receptor Nur77 has been found to promote renal ischaemia-reperfusion injury. In this study, we aim to explore the effects of Nur77 on cisplatin-induced AKI (CI-AKI) and its underlying mechanism.</p><p><strong>Methods: </strong>HK-2 cells treated with cisplatin were used to construct the CI-AKI model in vitro. Cell viability and cell proliferation were analysed using CCK-8 and EdU assays, respectively. Cell apoptosis was analysed by flow cytometry. The inflammation release level was detected using ELISA. Molecular abundance was evaluated using qPCR, Western blot and immunofluorescence. The interaction between Nur77 and SERPINA3 was clarified using ChIP and dual-luciferase reporter gene assays.</p><p><strong>Results: </strong>Our works demonstrated that Nur77 and SERPINA3 expression were considerably ascended in cisplatin-induced HK-2 cells. The silence of SERPINA3 alleviated cisplatin-stimulated HK-2 cell injury, which was characterised by increased cell viability and proliferation, and decreased apoptosis and inflammatory cytokine release. In addition, Nur77 promotes SERPINA3 transcription by binding to the SERPINA3 promoter region (-182 to -175), thereby upregulating SERPINA3 expression and activating the Wnt/β-catenin pathway. Moreover, HK-2 cell injury induced by cisplatin was notably inhibited by the knockdown of Nur77. Furthermore, the efficacy of Nur77 downregulation on the cell injury in cisplatin-stimulated HK-2 cells was antagonised by SERPINA3 overexpression.</p><p><strong>Conclusion: </strong>Taken together, our findings revealed that Nur77 knockdown resisted cisplatin-induced HK-2 cells injury through lessening the expression of SERPINA3 mediated by transcriptional regulation and inactivating the Wnt/β-catenin pathway.</p>","PeriodicalId":19264,"journal":{"name":"Nephrology","volume":"30 2","pages":"e70006"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nep.70006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Acute kidney injury (AKI) is the most common complication in the treatment of cisplatin, which is a clinically effective and classical anticancer drug. Orphan Nuclear Receptor Nur77 has been found to promote renal ischaemia-reperfusion injury. In this study, we aim to explore the effects of Nur77 on cisplatin-induced AKI (CI-AKI) and its underlying mechanism.

Methods: HK-2 cells treated with cisplatin were used to construct the CI-AKI model in vitro. Cell viability and cell proliferation were analysed using CCK-8 and EdU assays, respectively. Cell apoptosis was analysed by flow cytometry. The inflammation release level was detected using ELISA. Molecular abundance was evaluated using qPCR, Western blot and immunofluorescence. The interaction between Nur77 and SERPINA3 was clarified using ChIP and dual-luciferase reporter gene assays.

Results: Our works demonstrated that Nur77 and SERPINA3 expression were considerably ascended in cisplatin-induced HK-2 cells. The silence of SERPINA3 alleviated cisplatin-stimulated HK-2 cell injury, which was characterised by increased cell viability and proliferation, and decreased apoptosis and inflammatory cytokine release. In addition, Nur77 promotes SERPINA3 transcription by binding to the SERPINA3 promoter region (-182 to -175), thereby upregulating SERPINA3 expression and activating the Wnt/β-catenin pathway. Moreover, HK-2 cell injury induced by cisplatin was notably inhibited by the knockdown of Nur77. Furthermore, the efficacy of Nur77 downregulation on the cell injury in cisplatin-stimulated HK-2 cells was antagonised by SERPINA3 overexpression.

Conclusion: Taken together, our findings revealed that Nur77 knockdown resisted cisplatin-induced HK-2 cells injury through lessening the expression of SERPINA3 mediated by transcriptional regulation and inactivating the Wnt/β-catenin pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nephrology
Nephrology 医学-泌尿学与肾脏学
CiteScore
4.50
自引率
4.00%
发文量
128
审稿时长
4-8 weeks
期刊介绍: Nephrology is published eight times per year by the Asian Pacific Society of Nephrology. It has a special emphasis on the needs of Clinical Nephrologists and those in developing countries. The journal publishes reviews and papers of international interest describing original research concerned with clinical and experimental aspects of nephrology.
期刊最新文献
A Case of Atypical Hemolytic Uremic Syndrome With a Complement Factor I Mutation Triggered by a Femoral Neck Fracture. Long-Term Clinical Outcomes of Paediatric Kidney Transplantation in Hong Kong-A Territory-Wide Study. VDAC1 Cleavage Promotes Autophagy in Renal Tubular Epithelial Cells With Hypoxia/Reoxygenation Injury. Pegcetacoplan for the Treatment of Paediatric C3 Glomerulonephritis: A Case Report. Epiberberine Improves Hyperglycemia and Ameliorates Insulin Sensitivity in Type 2 Diabetic Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1