Lin Wu, Yu Ran, Li Yan, Yixing Liu, You Song, Dongran Han
{"title":"A dataset for surface defect detection on complex structured parts based on photometric stereo.","authors":"Lin Wu, Yu Ran, Li Yan, Yixing Liu, You Song, Dongran Han","doi":"10.1038/s41597-025-04454-6","DOIUrl":null,"url":null,"abstract":"<p><p>Automated Optical Inspection (AOI) technology is crucial for industrial defect detection but struggles with shadows and surface reflectivity, resulting in false positives and missed detections, especially on non-planar parts. To address these issues, a novel defect detection technique based on deep learning and photometric stereo vision was proposed, along with the creation of the Metal Surface Defect Dataset (MSDD). The proposed Stroboscopic Illuminant Image Acquisition (SIIA) method uses a specially arranged illuminant setup and a Taylor Series Channel Mixer (TSCM) to blend multi-angle illumination images into pseudo-color images. This approach enables end-to-end defect detection using universal object detectors. The method involves mapping color space transformations to spatial domain transformations and utilizing hue randomization for data augmentation. Four object detection methods (FCOS, YOLOv5, YOLOv8, and RT-DETR) were validated on the MSDD, achieving an mAP of 86.1%, surpassing traditional methods. The MSDD includes 138,585 single-channel images and 9,239 mixed images, covering eight defect types. This dataset is essential for automated visual inspection of metal surfaces and is freely accessible for research purposes.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"276"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04454-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Automated Optical Inspection (AOI) technology is crucial for industrial defect detection but struggles with shadows and surface reflectivity, resulting in false positives and missed detections, especially on non-planar parts. To address these issues, a novel defect detection technique based on deep learning and photometric stereo vision was proposed, along with the creation of the Metal Surface Defect Dataset (MSDD). The proposed Stroboscopic Illuminant Image Acquisition (SIIA) method uses a specially arranged illuminant setup and a Taylor Series Channel Mixer (TSCM) to blend multi-angle illumination images into pseudo-color images. This approach enables end-to-end defect detection using universal object detectors. The method involves mapping color space transformations to spatial domain transformations and utilizing hue randomization for data augmentation. Four object detection methods (FCOS, YOLOv5, YOLOv8, and RT-DETR) were validated on the MSDD, achieving an mAP of 86.1%, surpassing traditional methods. The MSDD includes 138,585 single-channel images and 9,239 mixed images, covering eight defect types. This dataset is essential for automated visual inspection of metal surfaces and is freely accessible for research purposes.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.