Real-time digital dermatitis detection in dairy cows on Android and iOS apps using computer vision techniques.

IF 1.3 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE Translational Animal Science Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.1093/tas/txae168
Agam Dwivedi, Marlee Henige, Kelly Anklam, Dörte Döpfer
{"title":"Real-time digital dermatitis detection in dairy cows on Android and iOS apps using computer vision techniques.","authors":"Agam Dwivedi, Marlee Henige, Kelly Anklam, Dörte Döpfer","doi":"10.1093/tas/txae168","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the study was to deploy computer vision models for real-time detection of digital dermatitis (DD) lesions in cows using Android or iOS mobile applications. Early detection of DD lesions in dairy cows is crucial for prompt treatment and animal welfare. Android and iOS apps could facilitate routine and early DD detection in cows' feet on dairy and beef farms. Upon detecting signs of DD, dairy farmers could implement preventive and treatment methods, including foot baths, topical treatment, hoof trimming, or quarantining cows affected by DD to prevent its spread. We applied transfer-learning to DD image data for 5 lesion classes, M0, M4H, M2, M2P, and M4P, on pretrained YOLOv5 model architecture using COCO-128 pretrained weights. The combination of localization loss, classification loss, and objectness loss was used for the optimization of prediction performance. The custom DD detection model was trained on 363 images of size 416 × 416 pixels and tested on 46 images. During model training, data were augmented to increase model robustness in different environments. The model was converted into TFLite format for Android devices and CoreML format for iOS devices. Techniques such as quantization were implemented to improve inference speed in real-world settings. The DD models achieved a mean average precision (mAP) of 0.95 on the test dataset. When tested in real-time, iOS devices resulted in Cohen's kappa value of 0.57 (95% CI: 0.49 to 0.65) averaged across the 5 lesion classes denoting the moderate agreement of the model detection with human investigators. The Android device resulted in a Cohen's kappa value of 0.38 (95% CI: 0.29 to 0.47) denoting fair agreement between model and investigator. Combining M2 and M2P classes and M4H and M4P classes resulted in a Cohen's kappa value of 0.65 (95% CI: 0.54 to 0.76) and 0.46 (95% CI: 0.35 to 0.57), for Android and iOS devices, respectively. For the 2-class model (lesion vs. non-lesion), a Cohen's kappa value of 0.74 (95% CI: 0.63 to 0.85) and 0.65 (95% CI: 0.52 to 0.78) was achieved for iOS and Android devices, respectively. iOS achieved a good inference time of 20 ms, compared to 57 ms on Android. Additionally, we deployed models on Ultralytics iOS and Android apps giving kappa scores of 0.56 (95% CI: 0.48 to 0.64) and 0.46 (95% CI: 0.37 to 0.55), respectively. Our custom iOS app surpassed the Ultralytics apps in terms of kappa score and confidence score.</p>","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":"9 ","pages":"txae168"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txae168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the study was to deploy computer vision models for real-time detection of digital dermatitis (DD) lesions in cows using Android or iOS mobile applications. Early detection of DD lesions in dairy cows is crucial for prompt treatment and animal welfare. Android and iOS apps could facilitate routine and early DD detection in cows' feet on dairy and beef farms. Upon detecting signs of DD, dairy farmers could implement preventive and treatment methods, including foot baths, topical treatment, hoof trimming, or quarantining cows affected by DD to prevent its spread. We applied transfer-learning to DD image data for 5 lesion classes, M0, M4H, M2, M2P, and M4P, on pretrained YOLOv5 model architecture using COCO-128 pretrained weights. The combination of localization loss, classification loss, and objectness loss was used for the optimization of prediction performance. The custom DD detection model was trained on 363 images of size 416 × 416 pixels and tested on 46 images. During model training, data were augmented to increase model robustness in different environments. The model was converted into TFLite format for Android devices and CoreML format for iOS devices. Techniques such as quantization were implemented to improve inference speed in real-world settings. The DD models achieved a mean average precision (mAP) of 0.95 on the test dataset. When tested in real-time, iOS devices resulted in Cohen's kappa value of 0.57 (95% CI: 0.49 to 0.65) averaged across the 5 lesion classes denoting the moderate agreement of the model detection with human investigators. The Android device resulted in a Cohen's kappa value of 0.38 (95% CI: 0.29 to 0.47) denoting fair agreement between model and investigator. Combining M2 and M2P classes and M4H and M4P classes resulted in a Cohen's kappa value of 0.65 (95% CI: 0.54 to 0.76) and 0.46 (95% CI: 0.35 to 0.57), for Android and iOS devices, respectively. For the 2-class model (lesion vs. non-lesion), a Cohen's kappa value of 0.74 (95% CI: 0.63 to 0.85) and 0.65 (95% CI: 0.52 to 0.78) was achieved for iOS and Android devices, respectively. iOS achieved a good inference time of 20 ms, compared to 57 ms on Android. Additionally, we deployed models on Ultralytics iOS and Android apps giving kappa scores of 0.56 (95% CI: 0.48 to 0.64) and 0.46 (95% CI: 0.37 to 0.55), respectively. Our custom iOS app surpassed the Ultralytics apps in terms of kappa score and confidence score.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Animal Science
Translational Animal Science Veterinary-Veterinary (all)
CiteScore
2.80
自引率
15.40%
发文量
149
审稿时长
8 weeks
期刊介绍: Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.
期刊最新文献
Real-time digital dermatitis detection in dairy cows on Android and iOS apps using computer vision techniques. Exploring industry perspectives and preferences about calf handling and restraint methods used during spring processing of calves in western Canada. Validation of proximity loggers to record proximity events among beef bulls. Potential of accelerometers to remotely early detect bovine ephemeral fever in cattle using pattern mining. Effects of administering local anesthesia immediately before surgical castration on indicators of pain and discomfort of beef calves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1