Hao-Yan Li, Yi Wang, Min Ran, Fei Gao, Bo-Yu Zhu, Hai-Ying Xiao, Chun Xu
{"title":"Tacrolimus induces insulin receptor substrate 1 hyperphosphorylation and inhibits mTORc1/S6K1 cascade in HL7702 cells.","authors":"Hao-Yan Li, Yi Wang, Min Ran, Fei Gao, Bo-Yu Zhu, Hai-Ying Xiao, Chun Xu","doi":"10.4239/wjd.v16.i2.97910","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tacrolimus (FK506) is a key calcineurin inhibitor used to prevent organ transplant rejection and is effective in improving graft survival. However, it is linked to hyperglycemia and insulin resistance, contributing to new-onset diabetes after transplantation and negatively affecting islet function.</p><p><strong>Aim: </strong>To study the effects of tacrolimus on the insulin signaling pathway of hepatocytes.</p><p><strong>Methods: </strong>HL7702 cells were treated with different concentrations of tacrolimus (0.1 mg/L, 1 mg/L, 5 mg/L) for 24 hours. The proteins involved in insulin signaling were detected by Western blotting.</p><p><strong>Results: </strong>Compared with the control group, phosphorylation of insulin receptor substrate (IRS) 1 at Ser 307 and Ser 323 were increased significantly when the tacrolimus concentration reached 1 and 5 mg/L. Phosphorylation of IRS1 at Ser 1101 was also increased, although not significantly. However, phosphorylation of Ribosomal protein S6 kinase beta-1 at Thr 389 was decreased significantly. The levels of phosphorylated glycogen synthase kinase 3α Ser 21 and Ser 9 were increased. Surprisingly, phosphorylation of glycogen synthase at Ser 641 was increased. There was no significant change in the activity of glycogen phosphorylase.</p><p><strong>Conclusion: </strong>Tacrolimus has no direct effect on hepatic glucose metabolism, but inhibits IRS1-mediated insulin signaling. This may be one of the underlying mechanisms by which tacrolimus induces insulin resistance.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 2","pages":"97910"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i2.97910","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tacrolimus (FK506) is a key calcineurin inhibitor used to prevent organ transplant rejection and is effective in improving graft survival. However, it is linked to hyperglycemia and insulin resistance, contributing to new-onset diabetes after transplantation and negatively affecting islet function.
Aim: To study the effects of tacrolimus on the insulin signaling pathway of hepatocytes.
Methods: HL7702 cells were treated with different concentrations of tacrolimus (0.1 mg/L, 1 mg/L, 5 mg/L) for 24 hours. The proteins involved in insulin signaling were detected by Western blotting.
Results: Compared with the control group, phosphorylation of insulin receptor substrate (IRS) 1 at Ser 307 and Ser 323 were increased significantly when the tacrolimus concentration reached 1 and 5 mg/L. Phosphorylation of IRS1 at Ser 1101 was also increased, although not significantly. However, phosphorylation of Ribosomal protein S6 kinase beta-1 at Thr 389 was decreased significantly. The levels of phosphorylated glycogen synthase kinase 3α Ser 21 and Ser 9 were increased. Surprisingly, phosphorylation of glycogen synthase at Ser 641 was increased. There was no significant change in the activity of glycogen phosphorylase.
Conclusion: Tacrolimus has no direct effect on hepatic glucose metabolism, but inhibits IRS1-mediated insulin signaling. This may be one of the underlying mechanisms by which tacrolimus induces insulin resistance.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.