Plantamajoside improves type 2 diabetes mellitus pancreatic β-cell damage by inhibiting endoplasmic reticulum stress through Dnajc1 up-regulation.

IF 4.2 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM World Journal of Diabetes Pub Date : 2025-02-15 DOI:10.4239/wjd.v16.i2.99053
Duo Wang, Yuan-Song Wang, Hong-Min Zhao, Peng Lu, Meng Li, Wei Li, Huan-Tian Cui, Zhong-Yong Zhang, Shu-Quan Lv
{"title":"Plantamajoside improves type 2 diabetes mellitus pancreatic β-cell damage by inhibiting endoplasmic reticulum stress through Dnajc1 up-regulation.","authors":"Duo Wang, Yuan-Song Wang, Hong-Min Zhao, Peng Lu, Meng Li, Wei Li, Huan-Tian Cui, Zhong-Yong Zhang, Shu-Quan Lv","doi":"10.4239/wjd.v16.i2.99053","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plantamajoside (PMS) has shown potential in mitigating cell damage caused by high glucose (HG) levels. Despite this, the precise therapeutic effects of PMS on type 2 diabetes mellitus (T2DM) and the underlying regulatory mechanisms require further exploration.</p><p><strong>Aim: </strong>To investigate PMS therapeutic effects on T2DM in mice and elucidate its mechanisms of action through <i>in vivo</i> and <i>in vitro</i> experiments.</p><p><strong>Methods: </strong>An <i>in vitro</i> damage model of MIN6 cells was established using HG and palmitic acid (PA). PMS's protective effect on cell damage was assessed. Next, transcriptomics was employed to examine how PMS treatment affects gene expression of MIN6 cells. Furthermore, the effect of PMS on protein processing in endoplasmic reticulum and apoptosis pathways was validated. A T2DM mouse model was used to validate the therapeutic effects and mechanisms of PMS <i>in vivo</i>.</p><p><strong>Results: </strong>PMS intervention ameliorated cell injury in HG + PA-induced MIN6 cell damage. Transcriptomic analysis revealed that protein processing in the endoplasmic reticulum and apoptosis pathways were enriched in cells treated with PMS, with significant downregulation of the gene Dnajc1. Further validation indicated that PMS significantly inhibited the expression of apoptosis-related factors (Bax, CytC) and endoplasmic reticulum stress (ERS)-related factors [ATF6, XBP1, Ddit3 (CHOP), GRP78], while promoting the expression of Bcl-2 and Dnajc1. Additionally, the inhibitory effects of PMS on ERS and apoptosis were abolished upon Dnajc1 silencing. Furthermore, <i>in vivo</i> experiments demonstrated that PMS intervention effectively improved pancreatic damage, suppressed the expression of apoptosis-related factors (Bax, CytC), and ERS-related factors [ATF6, XBP1, Ddit3 (CHOP), GRP78], while promoting the expression of Bcl-2 and Dnajc1 in a T2DM model mice.</p><p><strong>Conclusion: </strong>PMS intervention could alleviate pancreatic tissue damage effectively. The mechanism of action involves Dnajc1 activation, which subsequently inhibits apoptosis and ERS, ameliorating damage to pancreatic β-cells.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 2","pages":"99053"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i2.99053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Plantamajoside (PMS) has shown potential in mitigating cell damage caused by high glucose (HG) levels. Despite this, the precise therapeutic effects of PMS on type 2 diabetes mellitus (T2DM) and the underlying regulatory mechanisms require further exploration.

Aim: To investigate PMS therapeutic effects on T2DM in mice and elucidate its mechanisms of action through in vivo and in vitro experiments.

Methods: An in vitro damage model of MIN6 cells was established using HG and palmitic acid (PA). PMS's protective effect on cell damage was assessed. Next, transcriptomics was employed to examine how PMS treatment affects gene expression of MIN6 cells. Furthermore, the effect of PMS on protein processing in endoplasmic reticulum and apoptosis pathways was validated. A T2DM mouse model was used to validate the therapeutic effects and mechanisms of PMS in vivo.

Results: PMS intervention ameliorated cell injury in HG + PA-induced MIN6 cell damage. Transcriptomic analysis revealed that protein processing in the endoplasmic reticulum and apoptosis pathways were enriched in cells treated with PMS, with significant downregulation of the gene Dnajc1. Further validation indicated that PMS significantly inhibited the expression of apoptosis-related factors (Bax, CytC) and endoplasmic reticulum stress (ERS)-related factors [ATF6, XBP1, Ddit3 (CHOP), GRP78], while promoting the expression of Bcl-2 and Dnajc1. Additionally, the inhibitory effects of PMS on ERS and apoptosis were abolished upon Dnajc1 silencing. Furthermore, in vivo experiments demonstrated that PMS intervention effectively improved pancreatic damage, suppressed the expression of apoptosis-related factors (Bax, CytC), and ERS-related factors [ATF6, XBP1, Ddit3 (CHOP), GRP78], while promoting the expression of Bcl-2 and Dnajc1 in a T2DM model mice.

Conclusion: PMS intervention could alleviate pancreatic tissue damage effectively. The mechanism of action involves Dnajc1 activation, which subsequently inhibits apoptosis and ERS, ameliorating damage to pancreatic β-cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
World Journal of Diabetes
World Journal of Diabetes ENDOCRINOLOGY & METABOLISM-
自引率
2.40%
发文量
909
期刊介绍: The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.
期刊最新文献
Efficacy of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists on proteinuria and weight in a diabetes cohort. Electroacupuncture alleviates diabetic peripheral neuropathy through modulating mitochondrial biogenesis and suppressing oxidative stress. Evaluating the effectiveness of ultrasound-assisted wound debridement in managing diabetic foot ulcers: A systematic review and meta-analysis. Glucagon-like peptide-1 and impaired counterregulatory responses to hypoglycemia in type 1 diabetes. Impact of setting distinct target blood glucose levels on endogenous insulin suppression and pharmacodynamics of insulin preparations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1