Bernard Ngara, Lorenzo Flori, Rob Christiaan van Wijk, Jacqueline P Ernest, Sandeep Tyagi, Heena Soni, Christoph Hölscher, Kerstin Walter, Julia Dreisbach, Michael Hoelscher, Eric L Nuermberger, Rada Savic
{"title":"Translational modeling of BTZ-043 in predicting phase IIA efficacy and evaluating drug-drug interactions with BPaL in murine models.","authors":"Bernard Ngara, Lorenzo Flori, Rob Christiaan van Wijk, Jacqueline P Ernest, Sandeep Tyagi, Heena Soni, Christoph Hölscher, Kerstin Walter, Julia Dreisbach, Michael Hoelscher, Eric L Nuermberger, Rada Savic","doi":"10.1093/infdis/jiaf088","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>BTZ-043 is a promising novel drug candidate for anti-tuberculosis treatment. This study aimed to apply a previously developed mouse-to-human translational modeling platform for anti-tuberculosis drugs to predict phase IIA outcomes for BTZ-043 in humans and evaluate the impact of observed drug-drug interactions on the contribution of BTZ-043 to combotherapy in a mouse model.</p><p><strong>Methods: </strong>The study utilized data from mouse experiments for BTZ-043 monotherapy and combotherapy with bedaquiline, pretomanid, and linezolid, and clinical information for BTZ-043 monotherapy. The translational models were applied to predict the colony-forming units as a measure of efficacy in humans treated with BTZ-043 monotherapy and evaluate the effect of BTZ-043 on the pharmacokinetics-pharmacodynamics of combotherapy bedaquiline, pretomanid, and linezolid.</p><p><strong>Results: </strong>The mouse-pharmacokinetic and mouse-pharmacodynamic data for BTZ-043 monotherapy were best described by two-compartmental and direct Emax models, respectively. The model-based prediction of efficacy in humans was comparable to the observed phase IIA efficacy. Single-compartmental models, developed separately, best described the mouse-pharmacokinetic data for bedaquiline, pretomanid, and linezolid in combotherapy. Co-administration with BTZ-043 was associated with at least a 2-fold reduction in bedaquiline, pretomanid, and linezolid exposures in mice, and model-based simulations suggested that the observed decreases in exposure to these drugs would have resulted in even lower efficacy than what was observed when BPaL is co-administered with BTZ-043.</p><p><strong>Conclusion: </strong>The translational modeling platform adequately predicted the efficacy of BTZ-043 monotherapy. In the absence of drug-drug interactions, co-administration of BTZ-043 with bedaquiline, pretomanid, and linezolid in combotherapy is predicted to improve treatment efficacy.</p>","PeriodicalId":50179,"journal":{"name":"Journal of Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/infdis/jiaf088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: BTZ-043 is a promising novel drug candidate for anti-tuberculosis treatment. This study aimed to apply a previously developed mouse-to-human translational modeling platform for anti-tuberculosis drugs to predict phase IIA outcomes for BTZ-043 in humans and evaluate the impact of observed drug-drug interactions on the contribution of BTZ-043 to combotherapy in a mouse model.
Methods: The study utilized data from mouse experiments for BTZ-043 monotherapy and combotherapy with bedaquiline, pretomanid, and linezolid, and clinical information for BTZ-043 monotherapy. The translational models were applied to predict the colony-forming units as a measure of efficacy in humans treated with BTZ-043 monotherapy and evaluate the effect of BTZ-043 on the pharmacokinetics-pharmacodynamics of combotherapy bedaquiline, pretomanid, and linezolid.
Results: The mouse-pharmacokinetic and mouse-pharmacodynamic data for BTZ-043 monotherapy were best described by two-compartmental and direct Emax models, respectively. The model-based prediction of efficacy in humans was comparable to the observed phase IIA efficacy. Single-compartmental models, developed separately, best described the mouse-pharmacokinetic data for bedaquiline, pretomanid, and linezolid in combotherapy. Co-administration with BTZ-043 was associated with at least a 2-fold reduction in bedaquiline, pretomanid, and linezolid exposures in mice, and model-based simulations suggested that the observed decreases in exposure to these drugs would have resulted in even lower efficacy than what was observed when BPaL is co-administered with BTZ-043.
Conclusion: The translational modeling platform adequately predicted the efficacy of BTZ-043 monotherapy. In the absence of drug-drug interactions, co-administration of BTZ-043 with bedaquiline, pretomanid, and linezolid in combotherapy is predicted to improve treatment efficacy.
期刊介绍:
Published continuously since 1904, The Journal of Infectious Diseases (JID) is the premier global journal for original research on infectious diseases. The editors welcome Major Articles and Brief Reports describing research results on microbiology, immunology, epidemiology, and related disciplines, on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune responses. JID is an official publication of the Infectious Diseases Society of America.