Biosensor characterization: formal methods from the perspective of proteome fractions.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS Synthetic biology (Oxford, England) Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI:10.1093/synbio/ysaf002
Nicolás A Vaccari, Dahlin Zevallos-Aliaga, Tom Peeters, Daniel G Guerra
{"title":"Biosensor characterization: formal methods from the perspective of proteome fractions.","authors":"Nicolás A Vaccari, Dahlin Zevallos-Aliaga, Tom Peeters, Daniel G Guerra","doi":"10.1093/synbio/ysaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies characterize transcription factors and other regulatory elements to control gene expression in recombinant systems. However, most lack a formal approach to analyse the inherent and context-specific variations of these regulatory components. This study addresses this gap by establishing a formal framework from which convenient methods are inferred to characterize regulatory circuits. We modelled the bacterial cell as a collection of proteome fractions. Deriving the time-dependent proteome fraction, we obtained a general theorem that describes its change as a function of its expression fraction, a specific portion of the total biosynthesis flux of the cell. Formal deduction reveals that when the proteome fraction reaches a maximum, it becomes equivalent to its expression fraction. This equation enables the reliable measurement of the expression fraction through direct protein quantification. In addition, the experimental data demonstrate a linear correlation between protein production rate and specific growth rate over a significant time period. This suggests a constant expression fraction within this window. For an Isopropyl β- d-1-thiogalactopyranoside (IPTG) biosensor, in five cellular contexts, expression fractions determined by the maximum method and the slope method produced strikingly similar dose-response parameters when independently fit to a Hill function. Furthermore, by analysing two more biosensors, for mercury and cumate detection, we demonstrate that the slope method can be applied effectively to various systems. Therefore, the concepts presented here provide convenient methods for obtaining dose-response parameters, clearly defining the time interval of their validity and offering a framework for interpreting typical biosensor outputs in terms of bacterial physiology. Graphical Abstract Nutrients, transformed by the action of the Nutrient Fixators (purple arrow), are used at a rate of ρ for Protein biosynthesis. The total rate ρ is multiplied by expression fractions f<sub>R</sub>, f<sub>C</sub>, f<sub>H</sub>, and f<sub>Q</sub> to obtain the biosynthesis rate (black arrows) of each proteome fraction Φ<sub>R</sub>, Φ<sub>C</sub>, Φ<sub>H</sub>, Φ<sub>Q</sub>, respectively. In a graph of Growth rate versus Proteome Fraction Production Rate, a linear function (green lines) can be observed, and its slope is equal to the expression fraction at each condition.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"10 1","pages":"ysaf002"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaf002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Many studies characterize transcription factors and other regulatory elements to control gene expression in recombinant systems. However, most lack a formal approach to analyse the inherent and context-specific variations of these regulatory components. This study addresses this gap by establishing a formal framework from which convenient methods are inferred to characterize regulatory circuits. We modelled the bacterial cell as a collection of proteome fractions. Deriving the time-dependent proteome fraction, we obtained a general theorem that describes its change as a function of its expression fraction, a specific portion of the total biosynthesis flux of the cell. Formal deduction reveals that when the proteome fraction reaches a maximum, it becomes equivalent to its expression fraction. This equation enables the reliable measurement of the expression fraction through direct protein quantification. In addition, the experimental data demonstrate a linear correlation between protein production rate and specific growth rate over a significant time period. This suggests a constant expression fraction within this window. For an Isopropyl β- d-1-thiogalactopyranoside (IPTG) biosensor, in five cellular contexts, expression fractions determined by the maximum method and the slope method produced strikingly similar dose-response parameters when independently fit to a Hill function. Furthermore, by analysing two more biosensors, for mercury and cumate detection, we demonstrate that the slope method can be applied effectively to various systems. Therefore, the concepts presented here provide convenient methods for obtaining dose-response parameters, clearly defining the time interval of their validity and offering a framework for interpreting typical biosensor outputs in terms of bacterial physiology. Graphical Abstract Nutrients, transformed by the action of the Nutrient Fixators (purple arrow), are used at a rate of ρ for Protein biosynthesis. The total rate ρ is multiplied by expression fractions fR, fC, fH, and fQ to obtain the biosynthesis rate (black arrows) of each proteome fraction ΦR, ΦC, ΦH, ΦQ, respectively. In a graph of Growth rate versus Proteome Fraction Production Rate, a linear function (green lines) can be observed, and its slope is equal to the expression fraction at each condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
biGMamAct: efficient CRISPR/Cas9-mediated docking of large functional DNA cargoes at the ACTB locus. Biosensor characterization: formal methods from the perspective of proteome fractions. Inert splint-driven oligonucleotide assembly. CryptKeeper: a negative design tool for reducing unintentional gene expression in bacteria. Successful adaptation of a MinION nanopore for protein sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1