Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications.

IF 2.9 Q2 BIOPHYSICS Biophysics reviews Pub Date : 2025-02-12 eCollection Date: 2025-03-01 DOI:10.1063/5.0246194
Tingyu Li, Shoji Takeuchi
{"title":"Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications.","authors":"Tingyu Li, Shoji Takeuchi","doi":"10.1063/5.0246194","DOIUrl":null,"url":null,"abstract":"<p><p>Biohybrid robots have attracted many researchers' attention due to their high flexibility, adaptation ability, and high output efficiency. Under electrical, optical, and neural stimulations, the biohybrid robot can achieve various movements. However, better understanding and more precise control of the biohybrid robot are strongly needed to establish an integrated autonomous robotic system. In this review, we outlined the ongoing techniques aiming for the contraction model and accurate control for the biohybrid robot. Computational modeling tools help to construct the bedrock of the contraction mechanism. Selective control, closed-loop control, and on-board control bring new perspectives to realize accurate control of the biohybrid robot. Additionally, applications of the biohybrid robot are given to indicate the future direction in this field.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"6 1","pages":"011304"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0246194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Biohybrid robots have attracted many researchers' attention due to their high flexibility, adaptation ability, and high output efficiency. Under electrical, optical, and neural stimulations, the biohybrid robot can achieve various movements. However, better understanding and more precise control of the biohybrid robot are strongly needed to establish an integrated autonomous robotic system. In this review, we outlined the ongoing techniques aiming for the contraction model and accurate control for the biohybrid robot. Computational modeling tools help to construct the bedrock of the contraction mechanism. Selective control, closed-loop control, and on-board control bring new perspectives to realize accurate control of the biohybrid robot. Additionally, applications of the biohybrid robot are given to indicate the future direction in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊最新文献
Biomembrane structure at the molecular level and its application in precision medicine. Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications. Machine learning in molecular biophysics: Protein allostery, multi-level free energy simulations, and lipid phase transitions. On the reversibility of amyloid fibril formation. Halide perovskites, a game changer for future medical imaging technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1